
1

Ruth Malan
Bredemeyer Consulting

System
Design and
Software
Architecture

October 2024

2

 Copyright

 Since this is teaching material, I weave together quotes and references
to work by others. I have tried to take care to note the source of
quotes and image sources, and these obviously belong to their
original authors and creators.

 Reasonable use of original work herein is permitted, but please give
appropriate credit to Ruth Malan, and indicate if changes were made
(though please do not do so in any way that suggests we endorse you
or your use, unless you review it with us first and get said
endorsement).

 Copyright © 2024 Ruth Malan

 Technical Leadership Workshops

 Remote:

• December 4 and 11, 2024, 12pm-3pm Eastern Time (US/Canada).

 System Design and Software Architecture Workshops

 Remote:

• Feb 24-26 and Mar 3-5, 2025, 11am-3:30pm Eastern Time
(US/Canada).

See ruthmalan.com and ti.to/bredemeyer/ for schedule and more
information.

3

discourse (n.): late 14c.,
"process of understanding,
reasoning, thought,"

xkcd 657

Setting the Scene
What: Concepts in Systems, Design and Architecture
How: Designing Systems

How: Frames and Practices

Who: Roles and Organizational Dynamics
Closing the Scene

AGENDA

SOFTWARE
ARCHITECTURE

 The territory we span here, is
vast. Choices had to be made.
This is one path.

“The map is not the territory," Snicket's chaperon advises him. "That's an
expression which means the world does not match the picture in our heads.”

― Lemony Snicket, Who Could That Be at This Hour?

 Image: by Randall Monroe, https://xkcd.com/657/

 The XKCD 657 narrative map is used to suggest (but only loosely
and figuratively; there’s no intended or hidden meanings to be
found by looking for parallels) we’re all unfolding our own story,
and our journeys through these several days, and through this
space are all going to be unique, and challenging, and will have
some familiarity and surprises. The slider is just a reminder of
where we are. Now, we’re at a beginning. Setting the scene. But
we’re also, no beginning is the beginning. There’s all that came
before, and each of us is well into our journey of learning in
software and systems, and we bring so much experience and
insight to the work we will do together.

System Design and Software Architecture, by Ruth Malan, 2024

4

“the word is not the thing”
― Alfred Korzybski

AGENDA: Frames and Practices

Business
Strategy
Business
Strategy

Product
Design
Product
Design

System
Fitness
System
Fitness

Platform
Design

Platform
Design

Engineering
Strategy

Engineering
Strategy

Conceptual
Architecture
Conceptual
Architecture

Execution
Architecture
Execution

Architecture

Logical
Architecture

Logical
Architecture

Engineering Strategy

Conceptual Architecture

Physical Architecture

Logical Architecture

Business Strategy

Product Design

System Properties

Platform Design

SYSTEM
DESIGN

System
in context

System
(internals)

SOFTWARE
ARCHITECTURE

and

Woods' Theorem: “As the
complexity of a system
increases, the accuracy of any
single agent's own model of that
system decreases rapidly.”

 We will follow the “map” (or framework of frames and
practices) in the slide. It reflects an orientation to
system design where the design of the system
internals is informed by what the system is and is
becoming, and the various organizational,
development and user contexts that place demands
on the system. Of course, system design is not just
evolutionary design, but highly nonlinear. For one
thing, decisions interact, and we work across views,
with a willingness to backtrack and rethink as we
discover and learn and adapt to change (in our
understanding, context, other parts of the system, ..).
The various facets of system design are not evolved
sequentially, though the material here has to be
presented in some order. So, once we have explored
the formative concepts of architecture and systems,
this workshop will iterate between System-in-Context
and System Internals views and related design
practices.

Agenda as Map

Frames and practices in System Design and Software Architecture

5

Welcome!

Systems

and Arch

Break

Strategy &

Sit. Aware.

Systems and
architecture

Strategy and
situational awareness

12:00 – 1:00

1:00 – 1:30

1:30 – 2:30

11:00 – 11:50

2:40 – 3:30

approximately today

Eastern Time

Co-Creators of this Experience

Let’s Go!

 You! This workshop draws together what we have
learned architecting, and from architects, and further,
has the benefit of your years of experience in software
development, and leverages that. We have come via
different paths of experience and formal and self-
education, building unique knowledge foundations
and insights, so we each have much to offer each
other, as co-teachers and co-learners. The format
creates “containers” for collaboration, both as we
practice the practices of system design and
architecting (in team exercises), and in the large-group
sessions where slides and notes create context for
conversation. Learning is multi-faceted, but includes
seeing anew and making sense of our experience and
adding to it. We learn by doing, but also by adopting
and trying out heuristics others have distilled from
their experiences, and relating them to our contexts.
Conceptual frameworks help organize both
knowledge and practice, and foster (inter)connections.
Various canvases, templates, and diagrams help
convene the conversations where we collaborate on
system understanding and system shaping, designing
to “make things more the way they ought to be” (Herb
Simon). Quotes, and our own insights and
conversations, are among the matters we gather to
think other matters with (Donna Haraway).

‘It matters what matters we use
to think other matters with; it
matters what stories we tell to
tell other stories with; it matters
what knots knot knots; what
thoughts think thoughts, what
descriptions describe
descriptions, what ties tie ties. It
matters what stories make
worlds, what worlds make
stories.”

— Donna Haraway, Staying
With The Trouble

6

Setting the
Scene

Architecture: What?

Architecting: How?

Architects: Who?

System Design and Software Architecture, by Ruth Malan, 2024

7

We Are Our Own Stories

ARCHITECTS
AS LEADERS

 Think of some system design or
architecture work you did, that
impacted how things worked out

• Jot down some notes about the work
and the situation it addressed

• Draw a circle. Inside the circle: describe
what you did to influence the situation

• Outside the circle: describe what others
did, to shift outcomes

You are your own stories.” —Toni Morrison

We are doing this

We like to begin with a story, and we could begin with
a story from history, or our field. But we are our own
stories, too, and so let’s begin there. Let’s spend a few
minutes reflecting on some situation we’ve been in,
where we did some architecture work, and we like
what we brought to it. Not that we think everything
was perfect, but where we brought something to the
situation that impacted outcomes and experiences.

Draw a circle. To one side, describe the situation
briefly. Inside the circle, describe what you brought to
the situation, to influence and impact “success”
(effectiveness or achievement of desired outcomes).
Don’t shy away from noticing things to learn from, like
what didn’t go so well. Our stories are messy. Outside
the circle, add what others brought to the situation, to
impact (or impede) success. We can repeat this,
reflecting on our experience, filling out more of the
space, with situations and what we brought to them.

Stories are crucibles for learning. Our own stories too.
In these stories, it is worth drawing out: what was the
problem or challenge and what made it important or
of value to solve? What role did we and others play?
What did we and others bring to it?

Architecture Stories “Of course, you’re general, but you’re
also specific. A citizen and a person, and
the person you are is like nobody else on
the planet. Nobody has the exact
memory that you have. What is now
known is not all what you are capable of
knowing. You are your own stories and
therefore free to imagine and experience
what it means to be human without
wealth. What it feels like to be human
without domination over others,
without reckless arrogance, without
fear of others unlike you, without
rotating, rehearsing and reinventing the
hatreds you learned in the sandbox.
And although you don’t have complete
control over the narrative (no author
does, I can tell you), you could
nevertheless create it.” —Toni Morrison Source: Toni Morrison's Commencement Address to

the Wellesley College Class of 2004

Setting the Scene: Stories

8

We Are Because of Others
 As we do so, what do we notice

• About situations needing
leadership?

• About the role of others, when
we’re leading?

• About ourselves, when we’re
leading?

Facilitating a workshop
• With amazing,

experienced people
• Expectations to live

up to; halp

Trust and respect
• myself
• others (you!!)

we all bring experience
and goodwill to this

TECHNICAL
LEADERSHIPUbuntu: "I am because we are"

Leading and Following
 Kurt Lewin proposed the following heuristic equation:

 Lewin’s Equation: B = f(P, E)
Behavior is a function of a Person interacting with the
Environment (or situation)

 Our leading in a context has various attributes, including
our noticing what in the situation called for leadership, and
following in the sense of actively pitching in to co-shape
intent and the response to the situation, and get
something done, that we couldn’t have done alone. And
this is ongoing, as we and the situation co-evolve.

“[Mary Parker] Follett argues
that the primary
responsibility of leadership is to
discover the sense-making
thread that structures
understanding of the
‘total situation’, establish the
‘common purpose’ that
emerges from this, and by
leading, ‘anticipating’,
make the next situation.”
— Nanette Monin and Ralph Bathurst

 Quote Source:
Nanette Monin and Ralph Bathurst, “Mary Follett on the Leadership of ‘Everyman’,” 2008
 Abeba Birhane, “Descartes was wrong: a person is a person through other persons,” 2017

“I am because we are, and since we are
therefore I am” —John Mbiti

“We know from everyday experience that
a person is partly forged in the crucible of
community.” — Abeba Birhane

Setting the Scene: We are part of stories

9

Introduction
to Systems
and
Software
Architecture

Architecture

Systems

Design

Decisions

System Design and Software Architecture, by Ruth Malan, 2024

10

Scene Setting

 SOFTWARE
ARCHITECTURE

xkcd 657

What is architecture?
What are (complex) systems?
What is design?
And design decisions?

ARCHITECTURE
ESSENTIALS

“All architecture is design, but
not all design is architecture.”

— Grady Booch

 This section explores what architecture is.

 Systems and Complex Systems
 Systems are not just more, but other, than the sum of their
parts (Jabe Bloom, adapting Russ Ackoff). We will explore
systems, and complexity.

 Design
 Simply put, “we design to make things more the way we
want them to be” (Herbert Simon). We will elaborate on
design as it applies to, and is distinguished in, architecture.

 Decisions
 Design Decisions: we will introduce the facets of decisions
(context, constraints, decisions as enable and constrain,
tradeoffs, side-effects and consequences, alternatives and
options) as a bridge to design decision making.

Architecture

“Architecture is the thoughtful
making of space.”

— Louis Kahn

Introduction

11

 “In school, you're taught
a lesson and then given a
test. In life, you are given
a test that teaches you a
lesson.”

 — Tom Bodett*

 * variations on this quote abound; I just picked one (ascribed to Bodett) that playfully fits our first team exercise
Card deck image top: Dave Gray, Visual Frameworks

Gathering What We Know

Exercise: Concepts and Practices
 There are instructions on the Miro board, but essentially
we’re creating concept and practice cards. In person, we’d
use index cards (that have fronts and backs). We’re
simulating those cards on the Miro board (there’s a
template, but use freedom in adapting to your needs).

 The most important part of this activity is to have some fun
creating several cards that capture some of the key
concepts in systems and architecture, that shape how we
go about designing systems and software architecture,
along with some practice guidance that you’re harvesting
from your experience and investigative research or reading.

 The activity has several veins to it, including starting to get
to know each other a little, by working on something that
draws on and draws out the vast experience we collectively
have in this group. It has many opportunities to contribute
(whether it’s ideas for a representative evocative image to
go with the concept, or a quote you find useful in the way
it shapes an insight just so, or a heuristic wrestled from
experience, and so forth).

 But it is time-bound, so we accept good enough. It’s not so
much a test of what we can do it the time, as it is a test of
our willingness to pitch in and work collaboratively, and
then accept good enough, knowing that we will iterate
over this space of ideas, and have many opportunities
share and learn.

Oblique Strategies from Brian
Eno and Peter Schmidt, 1974:

 https://www.themarginalian.org/2014/01/22/b
rian-eno-visual-music-oblique-strategies/

System Design and Software Architecture, by Ruth Malan, 2024

12

What is Software Architecture? '92

 How we approach architecture, shapes what architecture, in
effect, is, at least for our system. That is, no matter what we say
architecture is (for), architecture is (an outcome of) what we
do. This is a POSIWID (the purpose of a system is what it does
– Stafford Beer) kind of point, noting that what the thing does,
trumps what we may think it is and ought to do.

 Still, intentions influence behavior. How we conceive of
architecture, influences what we do. If we think software
architecture is a set of decisions, say, we might use
Architecture Decision Records (or similar). If we think
architecture is the organizing structure of the system, we
might direct attention to diagrams or maps. If we think
architecture is system design, we bring attention and intention
to clarifying how they system ought to be. And so on.

 In short, what we do in the name of architecture, shapes what
it is; what we think it is, shapes what we do.

 At any rate, what follows is an iterative elaboration towards a
richer understanding of what software architecture is, to
inform how we advocate approaching the architecture of
systems we're design-evolving.

“Mr. Beck, what is software
architecture?”
“Software architecture?”
replied Kent, “well, it is what
software architects do.”
“So then, what is an
architect?”
“Hmm, ‘software architect’
it’s a new pompous title that
programmers demand to
have on their business cards
to justify their sumptuous
emoluments.”

Preamble

 Quote source: “What do software
architects do?” Philippe Kruchten, 1992

 “What is architecture?” doesn’t just set the
scene, it shapes our focus and responsibilities

 “There is after all [..] no point in claiming that the purpose of a
system is to do what it constantly fails to do” — Stafford Beer,
as quoted by David Benjamin and David Komlos

Introduction: What is Software Architecture?

13

'03

 Well, all that teasing out forces and considering alternatives is a lot of
work… and entails judgment calls about what is relevant, and to
what extent what factors now, is changing, and so forth.

Back in 1992 we had Kent Beck wryly observing that software
architecture is what architects do, and what architects do
is…¯_(ツ)_/¯.

 A (little over a) decade later, in 2003, we have Martin Fowler (in "Who
needs an architect?") similarly perplexed, and quoting Ralph Johnson:

"Tell us what is important.” Architecture is about the important stuff.
Whatever that is.

That’s good! We’ll hold it in mind, even as we work on making our
conception of architecture more expressive, in ways that help direct
our attention and design effort.

“The purpose of
abstracting is not to be
vague, but to create a
new semantic level in
which one can be
absolutely precise.”

— J. Edsger Dijkstra
(The Humble

Programmer, 1972)

Architecture is the Important Stuff

 Any questions?

System Design and Software Architecture, by Ruth Malan, 2024

14

What is it that Architects Do?

An architect is the person who
says: “It depends!” to every
question

Small print: A good architect tells you what it depends on.

Even smaller print: A top-notch architect* asks “What problem are we
trying to solve?“

* In this case, Yvonne Lam

 The “it depends” joke is used in various contexts. Another is:
A technical specialist knows more and more about less and less,
until they know everything about nothing.

An architect knows less and less about more and more, until they
know nothing about everything.

 Behind the wry quips are insights about messy situations,
extremes and balances, and context relevance. Part of what
we’re doing, is understanding the space, with all its forces, and
interactions and “wickedness” (in the sense of wicked problems).
Contextual sense and experience gives us great insights like
Kelsey Hightower’s heuristic guidance in the quote alongside.

 First, we will explore what software architecture is, and then we
will turn our attention to how we create software architecture
and what that entails. This introduction sets the scene for the
focus of this workshop on the “how” of system design and
software architecting, and we will iterate through various system
design views and decision sets. And finally, we’ll explore what
they means for architects and other system designers.

“Stick to boring
architecture for as long as
possible, and spend the
majority of your time, and
resources, building
something your customers
are willing to pay for.”

— Kelsey Hightower

Preamble

 “It depends” indicates context factors. But we still
have questions…

A little wry humor, as antidote to hubris and inappropriate
certainty, and other confidence tricks.

Introduction: What is Software Architecture?

15

Software Architecture: What?

 There are many
definitions of software
architecture, but none of
them are correct

tl;dr? “Name three things you like. You can’t have
them at the same time. “ Shorter? “No.”

 There’s no such thing as software
architecture

Software Architecture: Wut?
 Ken Scambler’s “hot tips” cover a lot of ground. Like, really a
lot. We should return to them, but for now let’s focus on the
last pair.

 Many definitions. None correct. All trying to do that hard
thing, which is characterize software architecture in a way
that helps the field know itself, and explain (and sell?) itself,
and shape what it attempts. The emphasis shifts, as different
characterizations of what software architecture is, attempt to
bring focus to an area of concern, and software architecture
defies these attempts – abstractions are leaky, especially
when pressed. Harder when there is no such thing as
software architecture.

 There are (more or less useful and more or less complete)
expressions of architectural intent, or renderings of
architecture of the current system, and so forth. But…
definitions do put stakes in the ground, so we can see better
what we have to build on, and how we’re doing relative to
the landscape of concern. So we will take a characterization
that gets a lot done, explore what it holds and unfolds, and
where we’d like to add to or amend it.

“In my experience
definitions are constraining
because (1) they are
abstractions and thus a
limited one dimensional
snapshot of a complex
dynamic and (2) we do not
appreciate how definitions
blind us to what we do
when we employ a
definition.”

— Ray Ison

System Design and Software Architecture, by Ruth Malan, 2024

16

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

All models are wrong, but…

significant

system

decisions

design

 … some are useful? We’ll use Booch’s characterization as a flywheel…

SOFTWARE
ARCHITECTURE

Introduction: What is Software Architecture?
 To summarize what’s ahead: each word in Grady Booch’s
characterization of architecture is worth exploring, because it
informs what software architecture is (and hence what we’re
doing when we create and evolve system and software
architecture). The definition provides a roadmap to this
section.

 We will use that definition as a flywheel of sorts, giving impetus
to an elaboration of our notion of architecture. We’ll let it take
us as far as it reaches, and then explore an adaptation to the
last phrase, so that we include cost of change, but also other
matters of architectural significance (strategic import, structural
integrity and resilience, adaptability and sustainability in various
terms, including economic).

 An Overview of the Overview (well, the
Introduction) section.

 A flywheel serves to
store mechanical
energy for later use: it
is an accumulator that
will deliver a surge in
power output upon a
drop in power

 Image: Flywheel design,
Leonardo da Vinci
(Wikimedia commons)

Introduction: What is Software Architecture?

 We will use a schematic “flywheel”
– oriented to also bring a compass
to mind – to serve as a “locator”
and context provider on the slides.
Since we keep cycling through the
topics, the icons provide another
visual cue of what topic we have
returned to, to elaborate further.

17

Decisions!

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

• Decisions!

 Hold up. Architecture is decisions? We got this!

What are the
implications?

 Decision has an interesting etymology, deriving from “to cut
off”:

decision (n.)

mid-15c., "act of deciding," from Old French décision (14c.), from
Latin decisionem (nominative decisio) "a decision, settlement,
agreement," noun of action from past-participle stem of
decidere "to decide, determine," literally "to cut off," from de
"off" (see de-) + caedere "to cut" (from PIE root *kae-id- "to
strike").

 Decisions (at least those we make intentionally) imply
reasoning, and coming to a determination, weighing choices
in a design space, which implies not just alternatives but (often
interacting) tradeoffs weighed and constraints taken into
account. There’s also matters of timing: when do we make
these decisions? What do we know when, and what can we
know/have confidence in? etc..

Decisions

 Hold up. Architecture is decisions! We got this!

“I love thinking about the
word DECISION through
the lens of “what am I
cutting off?”
It causes me a bit of a pause
because in choosing a path
of action, I’m not choosing
other paths of action (at
least at that time)

— Eb Ikonne

System Design and Software Architecture, by Ruth Malan, 2024

18

Architecture Decisions

• Decisions!
• ADRs

 the template indicates the territory

Title: short noun phrase
Context: desired outcome(s) and constraints and

forces at play (probably in tension)
Decision: recommended decision and supporting

arguments
Alternatives: other approaches we considered
Consequences: describes the resulting situation,

after applying the decision

 So architecture entails decisions — which we can identify, make
and document. An Architecture Decision Record (ADR)
documents decisions in terms of: the statement of the decision,
the outcome sought and the forces and other factors weighed in
the making of the decision, along with consequences or
implications of the decision. This template has echoes of the
patterns template used by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides in their Design Patterns book (1994),
that launched a genre (inspired by Christopher Alexander).

 The Tyree/Akerman (IEEE paper) and Zimmerman (IBM) decision
templates (that pre-dated Nygard’s more simple version), also
keep track of alternatives considered (but ruled out), and this is
valuable too. We’re persisting the reasoning that went into
choices.

Architecture Decisions

 Architecture Decisions? We have a template
for those!

‘Are you having a moment
of Deja Vu? When working
on a project, look at a
design or code and think,
"Why did they do this?
Why did they not consider
option X?" I have been
there. Decision Records
shine here not just as a
documentation tool but
also to preserve the
context of our design
choices and why they were
made.’

— Indu Alagarsamy*

 See also, Nat Pryce’s ADR tools on Github:
https://github.com/npryce/adr-tools
 Some examples:
• 18f TTS,

https://engineering.18f.gov/architecture-
reviews/

• Upmo, https://upmo.com/dev/decisions/ *https://domainanalysis.io/p/docume
nt-your-product-and-software

Introduction: What is Software Architecture?

19

ADR Examples

• Decisions!
• ADRs
• Examples

 Nice, but…

 Joel Parker Henderson has collected various resources around
Architecture Decision Records, from templates and guidance, to
links to the ADRs of various organizations, on github.

 https://github.com/joelparkerhenderson/architecture-decision-
record

 Examples: https://github.com/joelparkerhenderson/architecture-
decision-record/tree/main/examples

 The Application Logging ADR of the HHS/Head-Start-TTADP
project might be contrasted with the Metrics, Monitors and Alerts
ADR (as an exercise, noting that the team’s context and judgment
factors):

• Application Logging
https://github.com/HHS/Head-Start-
TTADP/blob/main/docs/adr/0004-application-logging.md

• Metrics, Monitors and Alerts
https://github.com/joelparkerhenderson/architecture-decision-
record/tree/main/examples/metrics-monitors-alerts#metrics-
monitors-alerts

The ADR template is vital. Still, too much of a good thing sinks
itself under its own weight, so an Architecture Decision Record
leaves itself begging the question — which decisions?

Architecture Decision Records

 And we have examples in the public record!

 Many, but not all, ADRs focus on
technology choices.
Example:
https://github.com/joelparkerhenders
on/architecture-decision-
record/tree/main/examples/high-
trust-teamwork

System Design and Software Architecture, by Ruth Malan, 2024

20

Which Decisions?

• Decisions!
• ADRs
• Examples
• Which

decisions?

Decisions are central, and it is a great
template, but you can just hear the
captain in the cockpit yelling "pull up,
pull up" — we'll run into a veritable
forest of decision trees if we speed too
far too fast down that runway just now.
Which decisions?

 Decisions! But which decisions?

Introduction: What is Software Architecture?

“All architecture is design, but
not all design is architecture.”

— Grady Booch

 If we tried to document every decision using this template (or
similar), we’d be overwhelmed, not only with the work of
documenting them, but finding them. To be useful, we need
to discern which decisions need this level of attention. It’s in
the title: Architecture Decision. But what counts as
architecture? Yes, that’s what we’re exploring. And yes,
judgment calls. But can we say more?

So Many Decisions!

21

Decisions that shape a System

• Shape a system
• System?

 that shape a system!!! … what’s a system?

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

 To address architecture (as a definition and as a design
practice), we need to understand systems

What are the
implications?

 While we generally think of cyberneticists when we think of early
systems thinkers, Ernest Fernollosa’s discussion in “The Lessons of
Japanese Art” (1891) hits key points:

“When several things or parts, by being brought into juxtaposition,
exert a mutual influence upon one another, such that each
undergoes a change, and as the result of these simultaneous changes
each becomes melted down, so to speak, as a new constituent of a
new entity, we have synthesis... . Here the parts are not left behind;
they persist altogether transfigured by the organic relation into which
they have entered. Such a synthetic whole is never equal to the sum
of all its parts; it is that plus the newly created substance which has
been formed by their union. Such a whole we cannot analyze into its
parts without utterly destroying it. Abstract one of the units, and the
light which irradiated it is eclipsed; it is like a hand cut off, limp and
lifeless.”

Systems — wholes — become, not just “greater than the sum of”
but something other than the parts they are made of; they give
rise to emergent properties and integrated capabilities.

“The whole is other than
the sum of the parts"

— Kurt Koffka*

What is a System?

 Which decisions? Those that shape a
system? So. What’s a system?

 * This may be a translation or paraphrase of: “It has been said: The
whole is more than the sum of its parts. It is more correct to say
that the whole is something else than the sum of its parts”
Kurt Koffka, "Principles Of Gestalt Psychology,“ 1935

“Simply defined, a system
is a complex whole the
functioning of which
depends on its parts and
the interactions between
those parts"

— Michael C. Jackson

System Design and Software Architecture, by Ruth Malan, 2024

22

What’s a System?

• Shape a system
• System?
• Whole that

consists of parts

Ackoff got you!

 “A system is a Whole that
consists of parts, each of
which can affect its behavior
or properties.”

 “The Parts of the system are
interdependent”

 — Russell Ackoff

 In this roughly 10 minute (starting at 1:24) talk (CW: limb
loss), Russ Ackoff covers and illustrates key characteristics
of systems. Notably, a system has properties that none of
its parts have, on their own. When we take a system,
decompose it into its parts, optimize the parts, and put
them back together, we don't even necessarily get a
working system. To see this, imagine you have the best
automotive engineers in the world pick the best carburetor,
the best fuel pump, distributor, and so on. Now ask them
to assemble those best parts into a car. Most likely they
can't because the parts don't fit, but even if they do, in all
likelihood it doesn't work very well. And at any rate, we
can't say anything about the properties, since they are
emergent from interactions among the parts, and with the
context (stopping on gravel versus pavement, etc.).

 Without interrelationships, we have, as Wim Roelandts put
it: "parts flying in formation, trying to be an airplane."

 Obvious? Surely. Yet we need to act on this understanding.
It is not enough to decompose a system into components
or microservices or whatever the chunking du jour,
minimizing interdependence, and proceed as if coherent
systems will simply emerge from independent teams.

What Characterizes Systems
SYSTEM meaning:
1. a set of connected things
or devices that operate
together
https://dictionary.cambridge.org

“The only thing added to the
parts to make the whole
greater* than the sum of its
parts is the interrelationships
among them.”

— Eb Rechtin

 * the whole is other than the sum

Introduction: What is Software Architecture?

 Ackoff got you!

23

Whole that consists of Parts

• Shape a system
• System?
• Whole that

consists of parts
• Elements and

relationships
• Decomposition?

 So … architecture is system decomposition??Image source: Simon Brown, https://c4model.com

 And indeed, so central is modularity (and
components) to architecture that when we think of
expressions of software architecture that we would
expect and recognize, there are the good old
“block diagrams.” These remain important as a
means to reason about and express architecture as
system structure, where elements are shown as
boxes, and relationships as lines. We can use
Simon Brown’s C4 or UML or sysML or Archimate
or something home grown, etc.. We’re expressing
the shaping design ideas of the system, visually.

Architecture is .. Block Diagrams?

System Design and Software Architecture, by Ruth Malan, 2024

24

Elements and Relationships

• Shape a system
• System?
• Whole that

consists of parts
• Elements and

relationships

’92

 Going back to 1992, Perry and Wolf were defining
(software) architecture as being concerned with "the
selection of architectural elements, their interactions,
and the constraints on those elements and their
interactions.“ And, indeed, the contemporary go-to
reference definition for software architecture (that being
the definition in wikipedia from the SEI team/Clements
et al book) is:

“Software architecture refers to the high level structures
of a software system [..] Each structure comprises
software elements, relations among them, and properties
of both elements and relations.”

 We're holding these two ideas about architecture in
creative suspension — architecture is decisions about
"the important stuff,” and architecture is about the
structure of the system.

Software architecture “includes
how the system is divided into
components and how the
components interact through
interfaces.”

— Martin Fowler

 Shaping decisions include design of
system structure

Elements and Relationships/Interactions

“A complex system cannot be
reduced to a collection of its basic
constituents, not because the
system is not constituted by
them, but because too much of
the relational information gets
lost in the process.”

— Paul Cilliers

Introduction: What is Software Architecture?

25

Architecture Of Complexity

 Source: “The Architecture of Complexity” by Herbert Simon, 1962

 “Empirically, a large proportion of
the complex systems we observe
in nature exhibit hierarchic
structure. On theoretical grounds
we could expect complex systems
to be hierarchies in a world in
which complexity had to evolve
from simplicity.”

 — Herbert Simon

• Shape a system
• System?
• Whole that

consists of parts
• Elements and

relationships
• Decomposition?
• Hierarchical

structure?

 Complex systems have structure

 “Let me introduce the topic of evolution with a parable. There once
were two watchmakers, named Hora and Tempus, who manufactured
very fine watches. Both of them were highly regarded, and the phones
in their workshops rang frequently -new customers were constantly
calling them. However, Hora prospered, while Tempus became poorer
and poorer and finally lost his shop. What was the reason?

 The watches the men made consisted of about 1,000 parts each.
Tempus had so constructed his that if he had one partly assembled
and had to put it down-to answer the phone say-it immediately fell to
pieces and had to be reassembled from the elements. The better the
customers liked his watches, the more they phoned him, the more
difficult it became for him to find enough uninterrupted time to finish
a watch.

 The watches that Hora made were no less complex than those of
Tempus. But he had designed them so that he could put together
subassemblies of about ten elements each. Ten of these
subassemblies, again, could be put together into a larger
subassembly; and a system of ten of the latter subassemblies
constituted the whole watch. Hence, when Hora had to put down a
partly assembled watch in order to answer the phone, he lost only a
small part of his work, and he assembled his watches in only a fraction
of the man-hours it took Tempus.”

“If you ask a person to
draw a complex object—
such as a human face—
[t]he[y] will almost
always proceed in a
hierarchic fashion.”

— Herbert Simon

Herbert Simon’s Parable of the Watchmakers

 Source: “The Architecture of complexity” by Herbert Simon

“We find structure on all
scales. In order to see
how difficult it is to grasp
these structures, it is
necessary to look at the
boundaries of complex
systems, and to the role
of hierarchies within
them.” — Paul Cilliers

System Design and Software Architecture, by Ruth Malan, 2024

26

Hierarchical (de)Composition

Image source: Simon Brown, https://c4model.com• Shape a system
• System?
• Whole that

consists of parts
• Decomposition?
• Elements and

relationships
• Hierarchical

structural?
• Zoom in

“Any system of consequence is
structured from smaller
subsystems which are
interconnected. A description of a
system, if it is to describe what
goes on inside that system, must
describe the system's connections
to the outside world, and it must
delineate each of the subsystems
and how they are
interconnected. Dropping down
one level, we can say the same
for each of the subsystems,
viewing it as a system. This
reduction in scope can continue
until we are down to a system
which is simple enough to be
understood”

— Melvin Conway

 Mel Conway, in the classic paper that articulated what
became known as Conway’s Law, illustrated a system at
different “zoom levels”: system; system composed of
subsystems; and two of the subsystems in more detail. Simon
Brown’s C4, likewise, “zooms in” to more detailed
decompositions within larger structures, from system in
context, to containers, to components, to code.

Hierarchy: structural organization

 Source: Melvin Conway, “How Do Committees Invent?”, 1968

Introduction: What is Software Architecture?

27

Significant Decisions!

• Significant
decisions!

• Significant?

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

 Hold up. Architecture is decisions! We got this!

 When I first read Martin Fowler’s “Who needs an Architect?”
column, I playfully summarized it as:

Which decisions does the architect make?

Architecturally significant decisions!

What is architecturally significant?

The architect decides!
Yes, it’s a tautology. But this is an important insight for all its
playfulness: judgment factors. That is, what is architecturally
significant, what needs architectural attention, is a judgment
call. And judgment is a matter of experience, of expertise, of
wisdom. A system’s architects are in effect, those who perhaps
accidentally, perhaps intentionally, perhaps both, make
design-shaping decisions (in the code, too). That’s a broader
set than those who play the role (with potential title) of
architect. But the point of drawing attention to architecture as
a focus of work and expertise, is making more of these
significant decisions intentionally. With due consideration.
Bringing insight and know-how, and know-what and know-
when, to bear. In the making of architecture decisions, and in
how we verify their effectiveness, and seek to learn and adapt
to discovery of emerging or better understood needs and
challenges, and possible improvements.

A matter of judgment. Can we say more?

Which Decisions? Significant Decisions!

“Wisdom = knowledge +
experience + good judgment”

— Diana Montalion

System Design and Software Architecture, by Ruth Malan, 2024

“Architecture is a hypothesis
about the future that holds
that subsequent change will
be confined to that part of
the design space
encompassed by that
architecture.”

— Foote and Yoder

 Source: Big Ball of Mud, Brian Foote and
Joseph Yoder, 1997
https://joeyoder.com/PDFs/mud.pdf

28

Significant? Cost of Change!

• Significant
decisions!

• Significant?

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

(ir)reversibility of decisions

high cost of change

low(er(ed)) cost of change

effort

 Significance is indicated by what it would take
to change, and how it enables change

“If you think good
architecture is expensive,
try bad architecture”
– Brian Foote and Joe Yoder

 “Significant is measured by cost of change” has two thrusts:
decisions that have high cost of change are (architecturally)
significant. Also, decisions that (substantively) lower the cost of
change, are architecturally significant. What makes decisions hard
to reverse, is entanglement with assumptions, expectations, and
other decisions and commitments (reified in code).

 The opening sentence to the must-read classic "Big Ball of Mud”
(by Brian Foote and Joseph Yoder, http://www.laputan.org/mud/),
observes that the de-facto standard in software architecture is
"the big ball of mud.“ And a “Big Ball of Mud” (highly coupled;
dependencies mean change ripples; etc.) architecture has high
cost of change. What it looks like (image by Bjørn Bjartnes):

Cost of Change

“You reach for the banana,
and get the entire gorilla”

– Michael Stahl

 In this sense, we’re seeking to reduce the cost
of change, by reducing entanglement. This is
not the only sense in which cost of change is
important to architecting, but it is worth
highlighting because it’s a big one.

 High entanglement (coupling) leads to low
comprehensibility, extensibility and evolvability,
and further, is vulnerable to error propagation.

Introduction: What is Software Architecture?

29

Modular Structure(s):
 Cost of Change!
• Isolate impact of change
• Isolate arenas of uncertainty

and experiment and risk
• Increase reversibility,

replaceability, deleteability
• Increase responsiveness and

adaptability
• Scalability, scope
• Reduce complexity
• Separation of concerns

(manageable cognitive load)

• Significant
decisions!

• Significant?
• Modularity and

cost of change

Interactions and coupling

Modularity: Containers for Change and Complexity
 By contrast with an entangled “big ball of mud,” a modular structure
reduces cost of change by (and to the extent that it achieves) isolating
change, shielding the rest of the system from cascading change. In a
modular approach, parts of the system that are unstable, due to
uncertainty and experimentation, can be shielded from other, better
understood and more stable parts of the system.

Parts can be plugged in, but removed if they don't work out, making
for reversibility of decisions that don't pan out. They can be replaced
with new or alternative parts, with minimal effect on other parts of the
system, enabling responsiveness to emerging requirements or
adaptation to different contexts.

Parts can be developed in parallel, engaging more teams.

 Further, it's a mechanism to cope with, and hence harness, complexity.
Partitioning the system, reduces how much complexity must be dealt
with at once, allowing focus within the parts with reduced demand to
attend (within the part) to complexity elsewhere in the system (caveats
apply). We give a powerful programmatic affordance a handle with
minimal understanding to invoke it, and can selectively ignore its
internals (caveats apply). Modularity is a way we cope with our
"bounded rationality" (Herbert Simon) and limit "cognitive load"
placed on teams (Team Topologies, Skelton and Pais).

“we have to keep it crisp,
disentangled, and
simple if we refuse to be
crushed by the
complexities of our own
making...” – Dijkstra

“if the features can be
broken into relatively
loosely bound groups of
relatively closely bound
features, then that
division is a good thing”

–Tim Berners-Lee

 Modularity our old friend, come to save us
from change again

System Design and Software Architecture, by Ruth Malan, 2024

30

Lehman’s Laws of
Software Evolution

1. Continuing Change" —
[a system] must be
continually adapted or it
becomes progressively
less satisfactory.

— M.M. Lehman

• Significant
decisions!

• Significant?
• Modularity and

cost of change
• Change: it’s the

Law!

Change! It’s the law!

Lehman’s Laws

 Sure, Lehman’s Laws were from the 70’s — that’s still the
early days of computing. What about an updated
reference?

 Law of Stretched Systems: Every system is stretched to
operate at capacity. Improvements, regardless of aim,
tend to be exploited for capacity and efficiency. (Woods
& Hollnagel, Joint Cognitive Systems: Patterns in
Cognitive Systems, 2006)

 “the Law of Stretched Systems: every system is stretched
to operate at its capacity; as soon as there is some
improvement, for example in the form of new technology,
it will be exploited to achieve a new intensity and tempo
of activity.” (David Woods and Sidney Dekker,
Anticipating the Effects of Technological Change, 2000)

Law of Stretched Systems

 In particular,

 1. a system must be continually
adapted or it becomes
progressively less satisfactory

 2. as a system evolves, its
complexity increases unless work
is done to maintain or reduce it

 Lehman's Laws recognize that
complexity comes from
(necessarily) adding value and
adapting, AND it takes work
and rigor to keep that
complexity from being
compounded by structural
decay.

 Lehman's laws of software
evolution in "Programs, Life
Cycles, and Laws of Software
Evolution" — Meir Lehman, Proc.
IEEE

 Software evolves through continuing
change, to adapt to change

Introduction: What is Software Architecture?

31

Design Decisions

• Design!
• What is design?

 What is design?

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady BoochWhat are the
implications?

 While this is useful, and points to a crucial focus of
architecture (namely organizing structure and support for
change), let’s direct attention at design, and consider what
else that brings into the characterization of architecture.
 We might ask “What is design?” and given that design is used
in various contexts, what is design in the context of
architecture and systems?

Design Decisions

 Backing up… Significant design decisions.
What’s design?

“One common definition of
design is to prefigure
something that doesn’t yet
exist. This could be a totally
new invention, the
modification of an existing
thing to a new use, or even a
different way of organizing
resources or people or
workflow. The common
feature across this variety of
situations is that of seeking
to bring about change,
major or minor, and devising
a means to do this."

— Anne-Marie Willis

System Design and Software Architecture, by Ruth Malan, 2024

32

Design?

• Design!
• What is design?
• Existing to

preferred

 “Everyone designs who
devises courses of action
aimed at changing existing
situations into preferred
ones.”

 — Herbert Simon

 Design brings intention and devising into it…

 We Design To Get More What We Want

 What is design? In The Sciences of the Artificial, Herbert Simon notes
"Everyone designs who devises courses of action aimed at changing
existing situations into preferred ones." This characterization is
profound, for all its straightforward simplicity. It raises such questions
as “whose preferences?”

 Dr. Jabe Bloom (https://x.com/cyetain/status/1427113866153103363)
has warned that Herbert Simon (in the quote alongside) ‘has
managed to externalize the question, “what is the goal?”, “what is
functional.” From here, with the goal given, Simon reduces design to
the calculation of a transform from current to future state.’

 We want to retain the openness of “changing existing situations into
preferred ones,” where matters of preferred and “ought,” and whose
preferences and oughts, are themselves among the design concerns.

“The engineer, and
more generally the
designer, is concerned
with how things ought
to be — how they
ought to be in order
to attain goals,
and to function.”

— Herbert Simon

 Quote sources:
The Sciences of the Artificial,
Herbert Simon, originally
published in 1968
“Ontological designing” by Anne-
Marie Willis, 2006

“we design, that is to say, we deliberate, plan and
scheme in ways which prefigure our actions and
makings — in turn, we are designed by our
designing and by that which we have designed”

— Anne-Marie Willis

Introduction: What is Software Architecture?

33

• Design?
• Existing to

preferred
• Shape a system
• System?

Designing a System
 Design… to reduce cost of
change? So modules? Is that it?

 “they [parts of a system] are
designed to fit each other so as
to work together harmoniously
as well as efficiently and
effectively.”

 — Russell Ackoff

 When we design a system, are we doing more
than designing parts that fit and function?

 Architecture addresses the decomposition of the system
into (architecturally significant) parts and composition or
integration of parts into a system:

 "To organize a system is to divide its labor functionally
among its parts and to arrange for their coordination." –
Russell Ackoff

 And yet our “ought” or “preferred” questions don’t stop
at “reduce the cost of change” or “architecture is what’s
hard to change, so less architecture is better”
(paraphrasing Martin Fowler), nor even at “the parts fit
and work together.”

“When you ask what a system
ought to be, then anybody
who's affected has some
relevant opinions. There is no
such thing as an expert on an
ought question. Everybody
can participate.”

— Russ Ackoff

Design of Systems

‘One popular definition of
architecture is "stuff that's
hard to change". I'd argue that
a good architect makes
change easier — thus reducing
architecture ’

— Martin Fowler

System Design and Software Architecture, by Ruth Malan, 2024

34

A System has Properties

 “The defining properties of
any system, are properties
of the whole, which none of
the parts have. If you take
the system apart, it loses its
essential properties”

 — Russell Ackoff

• Shape a system
• System?
• Properties of

the whole

 “A system is a set of two or more elements that satisfies the
following three conditions.
 1. The behavior of each element has an effect on the
behavior of the whole. [..]
 2. The behavior of the elements and their effects on the
whole are interdependent. [..]
 3. However subgroups of the elements are formed, each has
an effect on the behavior of the whole and none has an
independent effect on it. [..]

 A system, therefore, is a whole that cannot be divided into
independent parts.”

 — Russ Ackoff, Ackoff’s Best

 “You for example are a biological system called an organism,
and you consist the parts. Your heart, your lungs, your
stomach, pancreas, and so on, each of which can affect your
behavior or your properties. [..] Therefore the way the heart
affects you depends on what the lungs are doing, what the
brain is doing. The parts are all interconnected. Therefore a
system as a whole cannot be divided into independent
parts.”

— Russ Ackoff, If Russ Ackoff had given a TED Talk

What Characterizes Systems

“Synergy means behavior of
whole systems unpredicted by
the behavior of their parts
taken separately.”

— Bucky Fuller

"You have certain
characteristics. The most
important of which is life. None
of your parts live. You have life.
You can write. Your hand can't
write. [..] An eye can’t see. You
can think. Your brain can’t
think. Therefore when the
system is taken apart it loses its
essential properties.”

— Russ Ackoff

 A system has properties none of its
parts have.

Introduction: What is Software Architecture?

35

[Emergent] Properties

• Shape a system
• System?
• Properties of

the whole
• Emergent

properties

 ‘Roughly, by a complex system I mean
one made up of a large number of parts
that interact in a non-simple way. In
such systems, the whole is more than
the sum of the parts, not in an
ultimate, metaphysical sense, but in the
important pragmatic sense that, given
the properties of the parts and the laws
of their interaction, it is not a trivial
matter to infer the properties of the
whole”

 — Herbert Simon,
The architecture of complexity, 1962

 A system has properties none of its
parts have.

“Consciousness is an
emergent property of the
brain that cannot be
predicted by examining a
neuron.”

— Paul Cilliers

The capabilities and properties of the system, emerge from their
components (parts) and their interactions. Jabe Bloom notes:
“Emergence can be of 2 types, regular and novel:

• An example of regular emergence is a BZ reaction. This will
regularly emerge from a certain chemical reaction

• Novel emergence is the creation of new
information/structure/systems... it unfolds over time. Time IS
essential part of the context. Another way to say this is it takes
time“

Paul Cilliers: “This is not the same as saying that complex systems
are chaotic. Emergence is not a random or statistical
phenomenon. Complex systems have structure, and, moreover,
this structure is robust.”

Emergence

Emergent Properties

Richard Cook: "Safety is an emergent property of systems; it does
not reside in a person, device, or department of an organization
or system. Safety cannot be purchased or manufactured.”

“The emergent is unlike its
components insofar as
these are
incommensurable, and it
cannot be reduced to their
sum or their difference.”

— G.H. Lewes (in 1875)

System Design and Software Architecture, by Ruth Malan, 2024

36

Design for Properties

• Shape a system
• System?
• Properties of

the whole
• Emergent

properties
• Properties we

want

parts and
interactions

system
(in context)

emergence

design here

properties of parts (e.g.
understandability,
changeability, ..)

system
capabilities and
properties

impacts

impacts

 Patrick Hoverstadt on emergence:
 “The motorbike as a whole has the property of
speed, but take it to pieces and not only do none
of the components have the property of speed on
their own, if you hunt through the components,
you will not find any 'speed component'. It isn't a
component, isn't a thing in its own right and it
isn't a property of any of the bits. The bike only
has the property of speed once it is integrated
into a system. [..] Systems engineering as a
discipline is all about what's involved in designing
parts so they do integrate so you get the
emergent properties - like speed - that you want.

 So far so commonplace, why then the mystery? I
think partly because of the disconnect between a
commonplace tangible measurable and, in the
case of engineers, planned-for property like speed
and the intangible nature of where it comes from.
You can measure the speed of a motorbike, you
can feel it and yet you can't see 'it' because it' isn't
a tangible thing. Take the bike apart and there's
nothing but a pile of bits, there is no speed. There
is an undeniably weird aspect to emergence; it's
there, it's normal, it's tangible and in the case of a
motorbike, for many bikers, speed is everything

 We design to get more the
properties we want

 Source: Patrick Hoverstadt, The Grammar of
Systems: From Order to Chaos and Back

 and at the same time it is in a literal sense no-
thing. Emergence nearly always can play that trick
of the mind on you - a strange shapeshifting,
harlequin that despite its elusiveness is the point
of everything.

 For the systems engineering professors, their
discipline is that integration to produce
emergence and at a mechanistic level, this is the
explanation of emergence. As Smuts put it: "A
whole, which is more than the sum of its parts, has
something internal, some inwardness of structure
and function...some internality of nature that
constitutes that 'more?" The "inwardness of
structure and function" is exactly what the systems
engineers work with. It's about how the bike's
engine connects to the gearbox connects to the
back wheel connects to the road. Connect all that
up differently or in a different order and the parts
may stay the same, but the emergent will be
totally different.”

Introduction: What is Software Architecture?

37

Significant Decisions!

• Significant
decisions!

• Significant?

“Architecture represents the
significant design decisions
that shape a system, where
significant is measured by
cost of change.”

— Grady Booch

that part!!

 Can we say more about what it means to be
system shaping?

 While decisions that are hard to change is an important
heuristic for identifying architectural significance,
“significant design decisions that shape a system” has
more (or other) direct implications for characterizing
architecture decisions. We design (bring attention and
intention and expertise) to achieve more the capabilities
and system properties we want (where “we” and
“properties” and “want” are design matters, too).
 Lines of code don’t tell as about a system capability or
property. We can’t tell by looking at a chunk of code,
whether the system is changeable or performance is
acceptable. (We do move up and down the scopes of the
system, as we seek out what impacts performance —
looking for a bottleneck, say.) Capabilities at one scope,
rely on elements and interactions at more narrow scope,
and system shaping at one level, impacts, and is impacted
by, system shaping at other scopes.
 Let’s return to characterizing systems, and draw out
further implications for architecture when we direct our
attention at system shaping decisions.
 What else are we directing design attention and intention
at, when we’re making decisions that shape the system of
concern?

Decisions that Shape a System

System Design and Software Architecture, by Ruth Malan, 2024

38

System Identity and Purpose

• Shape a system
• System identity

and purpose

 “a system must consist of
three kinds of things:
elements,
interconnections, and a
function or purpose.”

 — Donella Meadows

 Identity, Coherence and Purpose

 Systems don’t exist in isolation; they play some role or
perform some function(s) that makes them viable in larger
contexts. Purpose and coherence give the system distinct
identity. Systems that are coherently organized, “have the
quality of forming a unified whole.” From a design point of
view, we’re also interested in coherence — the system has
congruity (things fit together in a way that makes sense),
consistency, conceptual integrity.

 System integrity includes fit to purpose, fit to context, internal
fit, and fitness. This brings in the notion of fitness functions,
and design within design envelopes (where falling outside the
design envelope, is a failure condition).

 What makes this system distinct?

“A system is a whole that is defined by its
function(s) in a larger system (or systems) of
which it is a part and that consists of at least
two essential parts, parts without which it
cannot perform its defining functions.”

— Russ Ackoff

“Theoretically, a system is defined
as a set of components that act
together as a whole to achieve
some common goal, objective, or
end. The components are all
interrelated and are either directly
or indirectly related to each other.
So, a chemical plant, an airplane,
an automobile, transportation in
general, county government, and a
television set are examples of
systems. They all consist of a set of
components working together to
achieve a common goal. [..] A
purpose is basic to the concept.”

— Nancy Leveson

 Source: Nancy Leveson, “White Paper on
How to Perform Hazard Analysis on a
System-of-Systems,”
http://sunnyday.mit.edu/SOS-hazard-
analysis.pdf

Introduction: What is Software Architecture?

39

System Boundary

• Shape a system
• System identity

and purpose
• Boundaries

delimit

“In order to be recognisable as
such, a system must be bounded in
some way. However, as soon as one
tries to be specific about the
boundaries of a system, a number
of difficulties become apparent. For
example, it seems uncontroversial
to claim that one has to be able to
recognise what belongs to a specific
system, and what does not. But
complex systems are open systems”

— Paul Cilliers

Paul Cilliers:

“In order to be recognisable as
such, a system must be bounded in
some way. [..] But complex systems
are open systems where the
relationships amongst the
components of the system are
usually more important than the
components themselves. Since
there are also relationships with the
environment, specifying clearly
where a boundary could be, is not
obvious. Boundaries are
simultaneously a function of the
activity of the system itself, and a
product of the strategy of
description involved. [..] An
overemphasis on closure will also
lead to an understanding of the
system that may underplay the role
of the environment. However, we
can certainly not do away with the
notion of a boundary.”

On Boundaries
Milan Zeleny:

 “These boundaries do not
separate but intimately connect
the system with its environment.
They do not have to be just
physical or topological, but are
primarily functional, behavioral,
and communicational.”

 Paul Cilliers:

 “We often fall into the trap of
thinking of a boundary as
something that separates one
thing from another. We should
rather think of a boundary as
something that constitutes that
which is bounded. This shift will
help us to see the boundary as
something enabling, rather than
as confining.”

 Source: “Boundaries, Hierarchies and Networks in Complex Systems,” Paul Cilliers
 And: Thinking in Systems, Donella Meadows

Donella Meadows:

“There are no separate systems.
The world is a continuum. Where
to draw a boundary around a
system depends on the purpose
of the discussion.”

“They mark the boundary of the
system diagram. They rarely mark
a real boundary, because systems
rarely have real boundaries.
Everything, as they say, is
connected to everything else, and
not neatly. There is no clearly
determinable boundary between
the sea and the land, between
sociology and anthropology,
between an automobile’s exhaust
and your nose. There are only
boundaries of word, thought,
perception, and social
agreement—artificial, mental-
model boundaries.”

 Systems have boundaries (well, actually…,
but then again…)

System Design and Software Architecture, by Ruth Malan, 2024

40

Boundaries

• Shape a system
• System identity

and purpose
• Boundaries

delimit
• Boundaries as

ideas, and
promises

“There was a wall. It did not look important. It was
built of uncut rocks roughly mortared. An adult
could look right over it, and even a child could climb
it. Where it crossed the roadway, instead of having
a gate it degenerated into mere geometry, a line, an
idea of boundary. But the idea was real. It was
important. For seven generations there had been
nothing in the world more important than that
wall. Like all walls it was ambiguous, two-faced.
What was inside it and what was outside it
depended upon which side of it you were on.”

—Ursula K. Le Guin, The Dispossessed

Boundaries contain. Cells have cell membranes and
cell walls. Animals have skin. Animal farms have
perimeter enclosures. … A car is distinct from it’s
driver? Except that some responsibilities are shared.

“Ecotones are where two ecosystems converge, such
as coastline, the edge of a forest, or a reed bed. They
are transition areas between two habitats, where two
biological communities meet and integrate.” (Tom
Geraghty)

Boundaries are an important idea in systems.
Sometimes this idea is reified as something physical
or at least communicable, like a contract or promise.
Sometimes it’s more a transitional area, or an idea of
some kind of separation. It could be a transitional
zone created by natures fluctuations. It might be
sustained by contract and governance thereof,
and/or maintained by convention and social mores.

At some level, systems create and maintain
boundaries as a mechanism to preserve (internal)
coherence (and so emergent “wholeness”) and
viability (allowing interactions across the boundary,
to bring sustaining energy into the system, and to
enable it to play its role in larger networks of
relationships and interactions).

More On Boundaries

“I use the word system to refer to
any collection of elements that,
through preferential interactions
between them, generate a
boundary with respect to other
elements with which they can also
interact in such a way that a
totality results”

— Humberto Maturana

“Boundaries are simultaneously a
function of the activity of the
system itself and a product of the
strategy of description involved”

— Paul Cilliers

 Boundaries are constructions

Introduction: What is Software Architecture?

41

Boundaries by Design

• Shape a system
• Design across

boundaries

 System design is
contextual design — it is
inherently about
boundaries (what’s in,
what’s out, what spans,
what moves between),
and about tradeoffs. It
reshapes what is
outside, just as it shapes
what is inside.

Images https://stock.adobe.com/ (free trial)

 Not simply changes in interface and style;
capabilities have been moved from driver to car

Whether we’re talking about whole systems or
abstractions within them, the notion of boundary
(and the identity it shapes, and the consequences
for relationships within and across boundaries) is
a central one for us, as we (co-)design and co-
evolve software-intensive and sociotechnical
systems.

The system (of interest) plays some role in larger
interacting systems of systems (variously
identified, including value networks,
environments, and ecosystems), and interfaces
enable (and constrain and shape) interactions
with the system.

So we’re interested in the larger (eco)system(s)
our system fulfils a purpose within. We explore
beyond the boundaries of the system we’re
designing, thinking about relevance, and what
makes sense to explore and understand, as we
shape the identity and purpose and capabilities
and properties of the system we’re design-
evolving.

The matter of boundaries (or what is the focal
system, really) is non-trivial, even when we might
be tempted to think our code delineates that

Boundaries as Design Concerns
boundary. For example, we might want our
software-intensive system to be resilient (more
than robust and reliable). For the kinds of systems
we create, we might view adaptive capacity as
being afforded by the larger socio-technical
system that is design-evolving the system of
interest. That is, for the system to be resilient and
responsive to changes in the environment or
context, we might draw our system boundary to
include SREs and incident response on the one
hand, and to include design learning, system
adaptation and CI/CD capabilities on the other.

On the slide, we’re indicating the evolution of the
car as a system, where more capabilities have
been shifted from driver to car (e.g. antilock
brakes, cruise control, etc.) and this is indicated
(suggested, but not fully evidenced) by shifts at
the “user interface.”

At any rate, part of system shaping is this shaping
of system capabilities (derived from its purpose,
but also evolving its purpose), as is designing how
these capabilities will be afforded to its contexts
(of use and value contribution).

System Design and Software Architecture, by Ruth Malan, 2024

42

System Boundary

https://herbertograca.com/2017/11/16/explicit-architecture-01-
ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

• Shape a system
• Design across

boundaries
• Design at the

boundary

 The Hexagonal (or
Ports and Adapters)
Architecture pattern,
separates interactions
at the system
boundary from the
core of the system

The system boundary determines, and is determined
by, interactions at, and across, the system boundary.
For software intensive systems, we’re ever balancing

• flexibility in what (capabilities or services, and
properties) the system can offer its environment
(users and their organization(s), other systems,
“the business” and its various stakeholders, larger
social contexts, etc.) and

• control, at some level, so the system meets its
promises, and expectations in interactions with
other systems (socio-techniocal, socio-economic,
socio-political, etc.), sufficiently.

As we’re determining the system boundary, we’re
making decisions about system capabilities and how
to enable access (or expose) them. These capabilities
define and are defined by the system identity or
purpose. (That is, identity ripples up to the system
level based on emergent capabilities, and identity or
purpose is a shaping consideration, as we’re
exploring and designing what capabilities and
properties we will build/evolve.). Users interact with
capabilities via the UI (as designed and implemented)
and external developers via APIs (platform design);
and our system depends on and interacts with
capabilities provided by other systems, etc.

System Boundary
We’ll discuss Hexagonal Architecture in the
architecture styles and patterns section. Here, we are
using it as an example of boundary design. (The
Hexagonal Pattern may be used at various scopes –
system, subsystem or service, etc.) In the Hexagonal
Pattern, interactions at the system boundary are
separated from the core application logic via ports
and adapters, and these are dedicated to maintain a
further separation of concerns at the boundary. This
separation supports change resilience (helping retain
adaptive capacity, by partitioning and managing the
impacts of change).

“Both the user-side and the server-
side problems actually are caused by
the same error in design and
programming — the entanglement
between the business logic and the
interaction with external entities”

— Alistair Cockburn

 https://alistair.cockburn.us/hexagonal-architecture/

Introduction: What is Software Architecture?

43

Boundaries within the System

• Shape a system
• Design across

boundaries
• Design at the

boundary
• Boundaries

within the
system

Image source: Simon Brown, https://c4model.com

 Component design is
contextual design — it is
inherently about
boundaries (what’s in,
what’s out, what spans,
what moves between),
and about tradeoffs. It
reshapes what is
outside, just as it shapes
what is inside.

We’ve mentioned systems composed of elements
(which may be systems, subsystems, components or
modules), and this matter of boundaries and
boundary as design concern comes up within the
system too. That is, it is, in a sense, fractal. When it
comes to component boundaries, we know this as
interface design, but it’s about the purpose of the
system component and the capabilities or
responsibilities of that component and how those
are accessed, how the component handles surprises
at the boundary, and what its dependencies are.

The repeated text on the slide, with a one word
shift, serves to emphasize this fractal process.
Within the system, we may talk about factoring and
refactoring, but conceptually we’re reminding
ourselves that components have a role to play in
the system, and if we change that role and its
associated responsibilities or commitments, that has
implications for other components and the system.

One approach comes from Domain Driven Design,
where we look to the boundaries in the domain, to
indicate boundaries both within the (software)
system and within the (software development)
organization design-evolving the system (gesturing
in the direction of Conway’s Law). More on all of
this in a later section, of course.

Boundaries within the System

System Design and Software Architecture, by Ruth Malan, 2024

44

System Integrity

• Shape a system
• System?
• Properties of

the whole
• Emergent

properties
• Coherence

 “A system is an
interconnected set of
elements that is coherently
organized in a way that
achieves something”

 — Donella Meadows

 Coherence and Purpose
 While we generally think of cyberneticists when we think of early
systems thinkers, Ernest Fernollosa’s discussion in “The Lessons of
Japanese Art” (1891) hits key points:

 “When several things or parts, by being brought into juxtaposition,
exert a mutual influence upon one another, such that each undergoes
a change, and as the result of these simultaneous changes each
becomes melted down, so to speak, as a new constituent of a new
entity, we have synthesis... . Here the parts are not left behind; they
persist altogether transfigured by the organic relation into which they
have entered. Such a synthetic whole is never equal to the sum of all
its parts; it is that plus the newly created substance which has been
formed by their union. Such a whole we cannot analyze into its parts
without utterly destroying it. Abstract one of the units, and the light
which irradiated it is eclipsed; it is like a hand cut off, limp and lifeless.”

 Coherence and purpose, give the system distinct identity. Systems
that are coherently organized, “have the quality of forming a unified
whole.” From a design point of view, we’re also interested in
coherence in the sense that it makes sense, it hangs together in a way
that has congruity, consistency, conceptual integrity.

 System integrity includes fit to purpose, fit to context, internal fit, and
fitness. This brings in the notion of fitness functions, or design within
design envelopes (outside the design envelope, is a failure condition).

 A system has a wholeness, something that
gives it unity

“a system must consist of
three kinds of things:
elements,
interconnections, and a
function or purpose.”

— Donella Meadows

“A system is a whole that
is defined by its
function(s) in a larger
system (or systems) of
which it is a part and that
consists of at least two
essential parts, parts
without which it cannot
perform its defining
functions.” — Russ Ackoff

Introduction: What is Software Architecture?

45

System Integrity

• System?
• Properties of

the whole
• Coherence
• System integrity

• Conceptual and design
integrity (requisite
cohesion in the context
of requisite variety, ...)

• Structural integrity
(resolves forces; in
contexts of complexity,
co-evolution, ...)

• Organization integrity
(ethics, ...)

"Dream Airplanes" by C.W. Miller, Design
Engineer at Vega Aircraft Corporation

We know it by its absence, like absence of balance

 Integrity, Coherence and Purpose

 To reiterate: From a design point of view, we’re also interested in
coherence, congruity and consistency — properties that have to
do with conceptual integrity. Balance, too — the illustration
indicates that overemphasis on any subset of stakeholder
concerns and system properties they care about, unbalances the
system; disturbs fit.

 By counterexample, a failure-prone system has compromised
integrity (hat tip: Arielle Paris). System integrity strives not just for
internal integrity, but integrity in interactions with other systems:
“When one complex system, with all its interactions, takes out
other complex systems, you quickly get an avalanche of other
failures” (quote from the pilot of Quantas Flight 32). We seek to
balance building responsiveness and adaptive capacity and
designing systems that don’t fail in ways that are catastrophic.

 Structural integrity goes beyond conceptual integrity to include
properties like reliability and robustness and recovery. System
integrity would include resilience and sustainability, or adaptive
capacity and coping mechanisms to deal with failures and with
context shifts. Often we rely on people in the socio-technical
system to add this capacity. Integrity is an ongoing project,
bending the arc of the system towards resilience and integrity,
recognizing that given complexity, uncertainty and change, we
never reach some “ultimate” integrity.

 Integrity is not an accident

“The essence of systems is
relationships, interfaces,
form, fit and function.”

“The essence of
architecting is structuring,
simplification,
compromise and balance.”

— Eberhardt Rechtin

“The most important thing
to remember about unity
is — that there is no such
thing. There is only
unifying.”

— Mary Parker Follett*
 * MPF, Co-Ordination, in “Freedom and Co-ordination”

System Design and Software Architecture, by Ruth Malan, 2024

46

Conceptual Integrity

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity

 “I will contend that
conceptual integrity is the
most important
consideration in system
design.”

 – Fred Brooks

According to Charles Betz (who researched this in writing his book), the
first published use of architecture in a computing setting, was Fred
Brooks in 1962:

“Computer architecture, like other architecture, is the art of determining the
needs of the user of a structure and then designing to meet those needs as
effectively as possible within economic and technological constraints.
Architecture must include engineering considerations, so that the design will
be economical and feasible; but the emphasis in architecture is upon the
needs of the user, whereas in engineering the emphasis is upon the needs of
the fabricator.” — Fred Brooks, "Architectural philosophy," 1962.

There already, Fred Brooks emphasized the importance of conceptual
integrity:

“The universal adoption of several guiding principles helped ensure the
conceptual integrity of a plan whose many detailed decisions were made by
many contributors.”

And Sharp, at the NATO Conference in Software Engineering in 1969:

“I think that we have something in addition to software engineering:
something that we have talked about in small ways but which should be
brought out into the open and have attention focused on it. This is the
subject of software architecture. [..] Parts of OS/360 are extremely well
coded. Parts of OS, if you go into it in detail, have used all the techniques
and all the ideas which we have agreed are good programming practice. The
reason that OS is an amorphous lump of program is that it had no architect.
Its design was delegated to a series of groups of engineers, each of whom
had to invent their own architecture. And when these lumps were nailed
together they did not produce a smooth and beautiful piece of software.”

Architecture and Conceptual Integrity
Conceptual integrity
unifies the design; it
gives the design ideas
coherence – fit to
purpose, fit to context,
and fit to form a
system. One that
doesn’t seem brute
forced or unnaturally
wrangled into a
“frankstein” whole.

Introduction: What is Software Architecture?

47

The Fitness of Things

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Fitness of

Things

• Artistry of
Engineering: an
innate sense of the
fitness of things

Gordon Glegg Design Lecture
https://www.youtube.com/watch?v=ezCp3Vy_01k&t=208s

 Gordon Glegg on the Fitness of Things

 “Now the artistry of engineering is an innate sense
of the fitness of things. And let me try and
describe by a rather disreputable example what I
mean. It is something that commends itself to you
without necessarily a rational background — you
just say immediately instinctively, that's the way to
do it.

 There was a director of a firm up in Scotland which
made an immense amount of plastic floor
covering and many million pounds of it was stored
in the warehouses there, and it was reported in a
long series of board meetings that quite a large
amount of it was being stolen. Now, we could not
understand how anyone could steal plastic rolls of
floor covering, two meters high, three quarters of
a meter diameter, weighing an immense amount
with these huge, strong steel doors, concrete
floors. There was no sign of the doors being
attacked. No signs of any exterior entry. No clues
at all. The police couldn't discover a clue of any
sort. How you got to those things mysteriously out
of a heavily guarded factory until someone in the
middle of the night spotted it being done.

 And one of the warehouse men each night before

 he went home, he pushed over one of these plastic
rolls and rolled it around ‘til it was next to the door.
He then proceeded to uncover the outside and stick
the edge under the door.. came back in the middle
of the night and just wound it up, you see.

 Now why you laughed was there was a sense of the
right way of doing it. The immediate impact was
that if you're going to be a thief, this is a good style
of thieving. This disreputable story is solely to
produce that sort of sudden impact: That's a good
idea. [chuckles] Even though it was a bad idea.

 Now, this sort of impact happens in engineering
design and is extremely valuable. And if you can
develop it, it will censor out silly ideas at source. But
there is a sense of paradox linked in with it. And
that is this: that all new inventions are embodied to
start with, in out of date technology.

 Technology always trots along behind the new
invention. And therefore a new idea which is
extremely good, may look extremely repellant when
first produced because the technology is clumsy,
awkward and unsuitable. And a sense of style
sometimes needs the ability to look through the
unsuitable technology to the idea beneath it.”

System Design and Software Architecture, by Ruth Malan, 2024

48

The “Law of the Situation”

• System?
• Properties of

the whole
• Coherence
• System integrity
• Fitness of

Things

 "Our job [..] how to devise
methods by which we can
best discover the order
integral to a particular
situation."

 — Mary Parker Follett

 Conceptual and design integrity includes the degree of fit – fit within
the system, fit of the system to its context, and fit to purpose. That
opens the question of the thing designed, as designer (at least,
playing a suggestive, even formative, role in its own design). So we’re
attending to what the system is and is becoming. Mary Parker Follett
suggests that we explore and understand the situation, to understand
and shape our response. (Which many of us would relate to Domain
Driven Design.)

 So design integrity brings with it fit or coherence, which begs the
question: how do we build coherent systems? And how do we do
this, with teams (of teams, even)?

The “Law of the Situation”

 Seeking design integrity has consequences for
design in context, and design of system internals

“That's always our
problem, not how to get
control of people, but how
all together we can get
control of a situation.”

— Mary Parker Follett

“understand the situation, must see it as a
whole, must see the interrelation of all the parts
[..] must do more than this. He [sic] must see
the evolving situation, the developing situation.
His wisdom, his judgment, is used, not on a
situation that is stationary, but on one that is
changing all the time.”

— Mary Parker Follett, ‘The Giving of Orders’

Introduction: What is Software Architecture?

49

 Though Fred Brooks does not define conceptual integrity exactly,
he wrote: “conceptual integrity is the most important
consideration in system design,” and “Every part must reflect the
same philosophies and the same balancing of desiderata”
(Mythical Man Month, 20th Aniv ed). Also, “Conceptual integrity in
turn dictates that the design must proceed from one mind, or
from a very small number of agreeing resonant minds.”

 Richard Gabriel**, in his critical engagement with Fred Brooks’
OOPSLA 2007 keynote*, offers:

 “The ingredients for conceptual integrity are these:

• the talent(s) of the human designer(s)—all of them;
• the thing designed;
• the luck that brought the designer(s) [..] to the right

place(s)[/]time(s); the luck of the thing designed to have the
right ingredients”

 That is, Gabriel is differing from Brooks on the matter of a single
architect-designer to achieve conceptual integrity.

 * Fred Brooks, Collaboration and TeleCollaboration, OOPSLA 2007,
http://www.oopsla.org/podcasts/Keynote_FrederickBrooks.mp3#t=
535
 ** Richard Gabriel, “Designed as Designer,”
https://www.dreamsongs.com/Files/DesignedAsDesignerExpanded
.pdf

 Conceptual integrity is brought about by an
active process of unifying and harmonizing

Whence Conceptual Integrity

Conceptual Integrity
 “[conceptual integrity]—
another contribution
from Brooks—is roughly
the state of having a
unified mental model of
both the project and the
user, shared among all
members of the team.”

 — Dorian Taylor

Image Source: https://wiki.c2.com/?ConceptualIntegrity

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity

“Having a system
architect is the most
important single step
toward conceptual
integrity.” — Fred Brooks

“It is better to have a
system omit certain
anomalous features and
improvements, but to
reflect one set of design
ideas, than to have one
that contains many
good but independent
and uncoordinated
ideas.” — Fred Brooks

System Design and Software Architecture, by Ruth Malan, 2024

50

Not Aggregation, but Integration

• System?
• Properties of

the whole
• Coherence
• System integrity

 “It has been taken as self-evident, as a mere
matter of arithmetic like 2 and 2 making 4, that if
everyone does his best, then all will go well. But
one of the most interesting things in the world is
that this is not true, although on the face of it, it
may seem indisputable. Collective responsibility is
not something you get by adding up one by one all
the different responsibilities. Collective
responsibility is not a matter of adding but of
interweaving, a matter of the reciprocal
modification brought about by the interweaving.
It is not a matter of aggregation but of
integration.”

 — Mary Parker Follett (MPF)

Systems consist of constituent elements and
relationships among them, but the process is not simply
additive. This, from Trond Hjorteland’s notes on the
Russ Ackoff talk:

“We still haven't taken onboard the interconnectedness of
the parts in a system. We still believe we can break things
down and treat it in isolation. See it all the time,
everywhere, both in design, but also team structure,
projects, etc.”

is underscored in Joonas Koivunen’s point too:

“I guess my main question which comes out of the
understandable/intuitive examples is, why is system
thinking still such a niche/unpopular idea.”

There are no easy answers, but systems concepts, and
how we achieve system coherence and integrity over
time, as the system, the organization building it, and the
context, all evolve, are matters for important discussion
and attention. Follett was early among those to
advocate for collaborative, integrative work, to shape
integrative responses.

Coherence and integrity bring along concepts of fit. Fit
together, fit to context, and fit to purpose. In order for
work to fit, in these various senses, we need to provide
enough context, including intent and understanding of
what “fit” entails, in this context.

Observations on Ackoff and Systems “They say that every organization
has a form, a structure, and that
what that organism does, its
unified activity, depends not on
the constituents alone, but on
how these constituents are
related to one another”

— Mary Parker Follett, 1926

We’re not simply creating additive structures,

“My solution is to depersonalize
the giving of orders, to unite all
concerned in a study of the
situation, to discover the law of
the situation, and obey that.”

— Mary Parker Follett

Introduction: What is Software Architecture?

51

 Of course, our systems exist in complex contexts, with (generally)
complex demands.

 “In colloquial terms Ashby’s Law has come to be understood as a
simple proposition: if a system is to be able to deal successfully with
the diversity of challenges that its environment produces, then it
needs to have a repertoire of responses which is (at least) as
nuanced as the problems thrown up by the environment. So a viable
system is one that can handle the variability of its environment. Or,
as Ashby put it, only variety can absorb variety.” – John Naughton

 Jabe Bloom: “The quickest way to explain Ashby’s Law is as follows: If
I am a fencer and I have 3 ways of thrusting at people, and
everybody else has three ways of parrying those thrusts, it will be an
even game. [..] I will be as in control as I can be. If someone else
figures out another thrust, I will then be required to learn another
parry otherwise I will always lose.” Implication: The more different
kinds of customers your business has, the more complexity you will
need to absorb, in order to respond to that.

 Brian Marick: ‘In the 80's, Robert Glass analyzed bugs in fielded
avionics software. Found faults of omission most important. I liked
his characterization of them: "code not complex enough for the
problem"’
 Jabe Bloom: “Sounds like Ashby's Law.”

"Ashby’s law dictates
that complex
environments (and
wicked problems) require
complex organizations."

— Jabe Bloom

Ashby’s Law: Requisite Variety
 “If a system is to be stable,
the number of states of its
control mechanism [its
variety] must be greater than
or equal to the number of
states in the system being
controlled”

 – Ross Ashby

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Requisite variety

Ashby's law of requisite
variety-which is an
interpretation of Shannon's
Theorem 10 in Shannon and
Weaver 1949-states that given
the variety of disturbances,
the only way to reduce the
variety of outcomes is to
increase the number of
responses. Or, as he puts it,
"[O]nly variety can destroy
variety" – Gerald Flueckiger

 Address variety with variety

Ashby’s Law: Address Variety with Variety

“The Battle Royale:
Ashby’s Law vs Herbert
Simon’s Bounded
Rationality”

—Jabe Bloom

System Design and Software Architecture, by Ruth Malan, 2024

52

 “So there’s two ideas: requisite variety meaning that a system that’s
going to address a complex space needs to have complexity inside
of it in order to react to the complexity outside of it; it’s like a
balancing act; so there’s this idea that you should have lots of
variety in the system. And the other side of it is requisite coherence.
And requisite coherence is the idea that if everyone is in a Tower of
Babel we’re not able to speak or work together. So the balancing
point here is common ground. And it’s this idea that we need just
enough common concepts to make progress — not maximally but
minimally. In order preserve the scanning and perceptual abilities of
multiple mental models.” — Jabe Bloom, VirtualDDD 1/16/20

 “Joint activity depends on interpredictability of the participants’
attitudes and actions. Such interpredictability is based on common
ground—pertinent knowledge, beliefs and assumptions that are
shared among the involved parties. Joint activity assumes a basic
compact, which is an agreement (often tacit) to facilitate
coordination and prevent its breakdown. One aspect of the
Basic Compact is the commitment to some degree of aligning
multiple goals. A second aspect is that all parties are expected to
bear their portion of the responsibility to establish and sustain
common ground and to repair it as needed.” — Gary Klein et al.

Incoherence Penalty: :
“Whatever time the
team members spend
re-establishing a
common view of the
universe”

— Michael Nygard

 Coherence with too much convergence, reduces variety;
too little coherence and the system loses integrity

Common Ground

Requisite Coherence

 “And requisite coherence
is the idea that if everyone
is in a Tower of Babel
we’re not able to speak or
work together. So the
balancing point here is
common ground.”

 — Jabe Bloom

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Requisite

coherence

53

 As we evolve systems respond to complex demands
(e.g., for system capabilities offered to users, and
system capabilities for system health, from scalability
to security to monitoring, defending the system
against threats), they become more complex, with
implications for expertise and organization capacity
(teams, of teams even). And with that organizational
complexity, there’s this matter of requisite coherence.
Requisite, because variety (different expertise,
experience, perspectives) and independence (and
autonomy) are also needed.

 For discussion: how do we achieve and balance
alignment and autonomy?

 “Autonomy is the ability to choose which action to
take

 Agency is the ability to choose an action to take (to
have intentions) and to be able to observe the results
of those actions in the system one acts within”

 — Jabe Bloom

 If we treat alignment as something that is done to (we
align the team), that’s mechanistic and…

Alignment, Autonomy and Common Ground

Highlights by Jabe Bloom; quote snip from Bungay’s book

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Requisite variety
• Requisite

coherence

Coherence and
Alignment
 We need variety to
respond to
complexity in the
environment

 We need coherence
to produce a system
with integrity

 Figure 4 from the STELLA Report (figure by
Richard Cook). Different actors interacting
with the system, have different mental models
of the system. These differences are not bad,
for they are related to the different ways they
interact with the system, and their different
areas of expertise. These different areas of
expertise create adaptive capacity, so these
differences are important to resilience.
(Allspaw via Bloom). Requisite coherence
relates to what is necessary for there to be
requisite variety (to respond to variety in the
use, development, operations, etc. space) and
yet still create a whole that has integrity.

System Design and Software Architecture, by Ruth Malan, 2024

54

Perspectives in Dialog

From: Unflattening, by Nick Sousanis

 “Consider instead,

 distinct vantage points

 Separate paths

 Joined in dialog

 Thus not merely side-by-side

 They intersect,

 engage,

 interact,

 combine,

 and inform one another

 As the coming together of two eyes in stereoscopic vision

 Outlooks held in mutual orbits

 Coupled, their interplay and overlap, facilitate the emergence
of new perspectives.

 Actively interweaving multiple strands of thought

 Creates common ground”

 — Nick Sousanis (@Nsousanis), Unflattening, pg 37

Integration of Perspectives

55

 Conversations (and conversational forms, like Slack,
RFCs, etc., even though async) draw in, and draw on,
various perspectives. (We need to consider whose
perspectives are not being drawn on, and in, and
why, too.) Visual forms help create “I see what you
mean” moments. A canvas, map, or diagram focuses
collaborative exploration, while also drawing
attention to areas the discussion might otherwise
avoid or neglect. The “how” is collaborative, guided
and yet open, integrative, ... There are times we need
to think through something carefully, writing and
interacting with our writing. However, participative
exploration, sense-making, and decision making
brings more perspectives to bear, and helps
generate understanding and create integrative
(rather than compromise) views.

 See also:

 Meetings *Are* the Work, by Elizabeth Ayer:
https://medium.com/@ElizAyer/meetings-are-the-
work-9e429dde6aa3

 How we work is part of the work…

Conversations and Common Ground

Coherence and Alignment

https://twitter.com/jessitron/status/1768687764353228997

"understanding of complex systems is distributed"
— Chris McDermott

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Requisite variety
• Requisite

coherence

“Alignment and direction is so
hard to get; clarity of what
you're doing and how you fit
into and contribute to a system
is so hard to maintain. But it's
so important that it should
never be neglected.
I see executives working on
decision matrices, and
engineers working on
refactoring, and infra building
platforms, but I don't see
people *actually
communicating together*”

— Hazel Weakly

System Design and Software Architecture, by Ruth Malan, 2024

56

Sociotechnical Systems
 Sociotechnical systems
refers to systems that
have social and technical
elements, and there is
mutual influence and
interaction of technical
and social elements

• System?
• Properties of

the whole
• Coherence
• System integrity
• Conceptual

integrity
• Requisite

coherence
• Requisite variety

 Trist, Eric. “The evolution of socio-technical
systems.” Occasional paper 2 (1981): 1981.

 Trist, Eric. “A concept of organizational
ecology.” Australian journal of management 2.2
(1977): 161-175.

 Elbanna, Amany, “Doing Sociomateriality
Research in Information Systems,” 2016

 Sociotechnical systems draws attention to this
partnering of people and technology in complex
systems, where people add capability to technical
systems, and especially their adaptive capacity. Technical
systems, in turn, extend capabilities of people involved
in some way, but also impact how work is done,
changing the “work relationship structure,” affecting
interactions, groups and individuals (potentially lowering
adaptive capacity, making work unsatisfying, etc.).

 The term socio-technical systems was coined by Eric
Trist, Ken Bamforth and Fred Emery, based on their
World War II era work with workers in English coal
mines, studying the impact of replacing the manual and
team-intensive “hand got” method with the “longwall
method” (using mechanical conveyors and coal-cutters).
They pointed out that a technological system impacts
the social system it interacts with:

 “So close is the relationship between the various aspects
that the social and the psychological can be understood
only in terms of the detailed engineering facts and of
the way the technological system as a whole behaves in
the environment of the underground (mining) situation.”

 — Eric Trist and Ken Bamforth, 1985

 Our technology systems are not independent; they
impact the social systems that interact with them

Sociotechnical Systems
“the claim is that the
technology and the sociology
cannot be seen as independent
parts, that the system as a
whole can only be improved by
joint optimization of those
parts. Productivity and
wellbeing are seen as emergent
properties of the system”

— Trond Hjorteland

57

Which System?

• Design!
• Which system?

 We aren’t only designing
the software intensive
system we’re design-
evolving. Systems change
their contexts.

“we design our world, while our
world acts back on us and
designs us” — Anne-Marie Willis

 If our system changes the context, is that part of
design?

 Design of the System in Context

 We have focused thus far mostly on design within the
system — parts and interconnections, and dynamic
interactions that give rise to systems and their properties.
But design has to do, also, with shaping intention: what
system capabilities and properties are we directing design
and engineering intention and experience at building? Yes,
this is the purview of product design, or system design
with an emphasis on the system in its context(s) of use.
And here we are often guided to “identify user needs” but
the essence of the design work here is more than
understanding users and their challenges and what would
be of value to them. It is also anticipating how the system
we’re design-evolving will change the systems they
participate in (their workflows, social connections, and so
on). Not perfectly. But enough to form theories about
value and consequences, and our responses. So we’re
back to “system of concern” and where we draw
boundaries.

“the wish [or intention]
confronts an environment as
altered by the wish; the
environment confronts a wish
as altered by the environment”

— Mary Parker Follett,
Creative Experience, 1924

 “Ontological designing” 2006

“we design, that is to say, we
deliberate, plan and scheme in
ways which prefigure our
actions and makings — in turn,
we are designed by our
designing and by that which
we have designed”

— Anne-Marie Willis

“We can never understand the total
situation without taking into account the
evolving situation” — Mary Parker Follett

System Design and Software Architecture, by Ruth Malan, 2024

58

Reality Construction
 “We do not analyze requirements;
we construct them”

 “Their emergence is specific to the
individual design process; it is not
determined by the given problem.
Instead the problem itself is grasped
in the course of the design process.”

 — Christiane Floyd

• Design!
• Which system?
• Reality

construction

 co-creating an ever emergent reality
– with our minds!

Cameron Tonkinwise (2021):

“the ways in which designers
design, the ways in which design is
ontological, even at a human
product scale, because it creates
worlds, habits, dispositions. A
designer is never [..] just designing
a product: they are reinforcing
particular models of the human”

Christiane Floyd:

"We do not analyze requirements;
we construct them from our own
perspective. This perspective is
affected by our personal priorities
and values, by the methods we use
as orientation aids, and by our
interaction with others”

“jointly creating computer-
supported contexts of action with
users”

Co-Evolutionary Design

 Ref: Software Development as
Reality Construction, by Christiane
Floyd, 1992

“there is a feedback loop
here that says actually
designing things [..]
changes what we will
design in the future, and
doesn’t stop — it’s a
loop.” — Jabe Bloom

“Design designs”
— Tony Fry

 Meir Lehman (1980):

 "The installation of the program
together with its associated
system [..] change the very nature
of the problem to be solved. The
program has become a part of the
world it models, it is embedded in
it. Analysis of the application to
determine requirements,
specification, design,
implementation now all involve
extrapolation and prediction of
the consequences of system
introduction and the resultant
potential for application and
system evolution. This prediction
must inevitably involve opinion
and judgment.“

“All that you touch
You Change
All that you Change
Changes you”

— Octavia Butler,
Parable of the Sower

?

59

 Systems design – where our system
exists in various contexts

Various Contexts of Work and Ecosystems

Which Environment?

Image adapted from Merrelyn Emery, “Self management of the self
managing organization: an update”

• Users and their task
environment?

• Operations and their
task environment?

• Developers and their
task environment?

 All of them! (managers
too)

• Design!
• Which system?
• Which

environment?

 More! Our decisions as system designers impact,
and hence need to be informed and influenced
by, various contexts: the work or other
(entertainment, etc.) contexts of users; our
partners in the value stream and what they are
contending with; our operations teams or, if
we’re designing embedded software for
products, the maintenance and repair teams and
their work environments; developers and others
in our organization evolving the system; and so
forth. So as we scan for what is relevant to the
decision or decisions we’re making, sure, we need
to use discipline and scope our exploration. But
we also need to use discipline in the sense that
this adds complexity, and ignorance makes things
easier in the short haul, but…

 Sociotechnecological was coined by Jabe Bloom,
to bring together sociotechnical, techne, and
ecological. ‘Techne is a term in philosophy that
refers to making or doing, which in turn is
derived from the Proto-Indo-European root
"Teks-"meaning " to weave," also "to fabricate".
As an activity, technē is concrete, variable, and
context-dependent.’
(https://en.m.wikipedia.org/wiki/Techne)

 In sociotechnecological, Jabe Bloom (@cyetain) is
extending sociotechnical (in sociotechnical
systems) in important ways — he adds to
techne’s sense of skillful, underscoring it with
skillful coping, and adds ecological.

“Software development then always
creates sociotechnical, socioeco-
nomic, sociocultural systems.”

— Christoph Becker

System Design and Software Architecture, by Ruth Malan, 2024

60

Sociotechnical Systems
Often, when we talk about
sociotechnical systems, we
mean the dev org and technical
systems we interact with(in)

But there are various
sociotechnical systems (and
ecosystems) to consider:
• development
• operations
• user
• value network

development
ecosystem

operations
ecosystem

value network
/business
ecosystem

user
ecosystem

• Design!
• Which system?
• Which

environment?
• Multiple

sociotechnical
systems

 Much of the emphasis on sociotechnical systems in our
field has been on ourselves in the development context,
and the impact of technology on our work — how we
organize to build and evolve systems, the way we
structure our code and how that impacts the
organization and vice versa (Conway’s Law/Mirroring
Hypothesis), how our development environment and
CI/CD platform impacts developer experience, and more.
Or we focus on users and how the systems we’re
building impacts their work and direct and indirect
experience. In either case, noting that we need to jointly
design the system and how work is done, and factor the
mutual impact of technology and people and
organizations. And so on. The point here is simply to
remind ourselves that this needs to happen in multiple
dimensions, considering these various interacting spaces
of sociotechnical systems (STS) — dev STS (code,
development platform, team and organizational
concerns like team responsibilities, and more); user STS
(software in use, user workflows and their organizational
contexts as relevant, and more); etc.

“The field sees its focus as the
development of technical
systems with clear boundaries
and identifiable parts and
connections, modules, and
dependencies. But fifty years
after the founding of software
engineering as a field, the
boundaries between software
and its social and
environmental contexts are
rapidly dissolving. Software
systems now have become part
of our societies' fabrics and
shape the relationships that
constitute them”

— Christoph Becker

Sociotechnical Systems

 We create, evolve and operate sociotechnical systems
within sociotechnical systems — within ecosystems

61

Ecosystems

Images: https://www.exploringnature.org/
https://www.cgma.org/resources/reports/the-extended-value-chain.html

• Design!
• Which system?
• Which

environment?
• Multiple

sociotechnical
systems

• Ecosystems

 "A (biological) community of
interacting organisms and their
(physical) environment."

 "Complex of living organisms,
their physical environment, and
all their interrelationships in a
particular unit of space."

 — Encyclopedia Britannica

 “An economic community supported by a foundation of
interacting organizations and individuals—the organisms of the
business world. The economic community produces goods and
services of value to customers, who are themselves members of
the ecosystem. The member organisms also include suppliers, lead
producers, competitors, and other stakeholders. Over time, they
coevolve their capabilities and roles, and tend to align themselves
with the directions set by one or more central companies. Those
companies holding leadership roles may change over time, but
the function of ecosystem leader is valued by the community
because it enables members to move toward shared visions to
align their investments, and to find mutually supportive roles.” —
James F. Moore

 An ecosystem is not only a system of innovation-driven change,
but of weaving relationships that stabilize and repair. Adapting to
change, coping with uncertainty, these are things we talk about in
a VUCA (volatility, uncertainty, complexity, ambiguity) world.
Ecosystem activities involve flows and transformations, using and
creating value. As well as activities by which stability is maintained,
including repair, and building what we learn back into our
systems. Or at least, we should. Maintenance (reducing tech and
environmental debt), should play a larger role in our organizations
and communities.

Ecosystem Business Ecosystem

 Source: James F. Moore, The
Death of Competition:
Leadership & Strategy in the
Age of Business Ecosystems.
1996.

 Systems exist – sustain, thrive , fail – in the context
of other systems

System Design and Software Architecture, by Ruth Malan, 2024

62

 Systems design – we know it, when
it’s missing!

What is Systems Design?

What is systems design?
 “What is systems design? It's the
thing that will eventually kill your
project if you do it wrong, but
probably not right away. It's
macroeconomics instead of
microeconomics. [..] It's knowing
when a distributed system is or
isn't appropriate, not just knowing
how to build one.”

 — Avery Pennarun

• Design!
• System design is

about system
viability
(thriving even)

https://apenwarr.ca/log/20201227

 “Most of all, systems design is invisible to people who
don't know how to look for it. At least with code, you
can measure output by the line or the bug, and you can
hire more programmers to get more code. With systems
design, the key insight might be a one-sentence
explanation given at the right time to the right person,
that affects the next 5 years of work, or is the difference
between hypergrowth and steady growth. “ — Avery
Pennarun (@apenwarr), “Systems design explains the
world: volume 1”

 Source: https://apenwarr.ca/log/20201227

 System design is about shaping decisions that impact
the very viability of the system, over different horizons.
That is, it is about identifying and overcoming strategic
hurdles at different evolutionary points, and making
decisions we have to live with over longer horizons —
with discernment.

“They were doing some hard
jobs — translating business
problems into designs — with
great expertise”

— Avery Pennarun

“Compasses are for
learning how to
use them.”

– kid (at 7)

63

Wicked Problems

From: Design Thinking: What is That? By Jean-Pierre Protzen

• System?
• Wicked

problems are
wicked!

 “The problems that scientists and engineers have
usually focused upon are mostly "tame" or
"benign" ones. As an example, consider a
problem of mathematics, such as solving an
equation; or the task of an organic chemist in
analyzing the structure of some unknown
compound; or that of the chessplayer attempting
to accomplish checkmate in five moves. For each
the mission is clear. It is clear, in turn, whether or
not the problems have been solved.

 Wicked problems, in contrast, have neither of these
clarifying traits; and they include nearly all public
policy issues--whether the question concerns the
location of a freeway, the adjustment of a tax
rate, the modification of school curricula, or the
confrontation of crime.”

 “1. There is no definitive formulation of a wicked
problem: [..] The information needed to
understand the problem depends upon one's idea
for solving it. That is to say: in order to describe a

 Source: Horst Rittel and Melvin Webber, Dilemmas
in a General Theory of Planning, 1973

 A great collection of references on “messes” and
“wicked problems”:
https://github.com/lorin/messiness

Wicked Problems are Wickedly Hard

 Wicked problems with no neat closure

 wicked-problem in sufficient detail, one has to
develop an exhaustive inventory of all conceivable
solutions ahead of time. The reason is that every
question asking for additional information
depends upon the understanding of the problem
— and its resolution — at that time. Problem
understanding and problem resolution are
concomitant to each other.

 2. Wicked problems have no stopping rule: The
planner terminates work on a wicked problem, not
for reasons inherent in the "logic" of the problem.
He stops for considerations that are external to the
problem: he runs out of time, or money, or
patience. He finally says, "That's good enough," or
"This is the best I can do within the limitations of
the project," or "I like this solution," etc.

64

How Complex Systems Fail
1. Complex systems are intrinsically

hazardous systems

2. Complex systems are heavily and
successfully defended against failure

3. Catastrophe requires multiple failures –
single point failures are not enough

4. Complex systems contain changing
mixtures of failures latent within them

5. Complex systems run in degraded mode

6. Catastrophe is always just around the
corner

 -- Richard I. Cook

• System?
• Wicked

problems
• How complex

systems fail (and
don’t)

• The complexity of complex systems
makes it impossible for them to run
without multiple flaws being
present. Because these are
individually insufficient to cause
failure, they are regarded as a
minor factor during operations.

• Complex systems therefore run in
degraded mode as their normal
mode of operation!

• Changes introduce new forms of
failure

• Safety is a characteristic of systems
and not of their components

• People continuously create safety
• Failure free operations require

experience with failure.

 From Adrian Colyer’s notes on
Richard Cook’s classic paper:

• Complex systems are
intrinsically hazardous, which
drives over time the creation
of defense mechanisms
against those hazards. (Things
can go wrong, and we build up
mechanisms to try and prevent
that from happening).

• Complex systems are heavily
and successfully defended
against failure, since the high
consequences of failures lead
to the build up of defenses
against those failures over
time.

• Because of this, a catastrophe
requires multiple failures –
single point failures are
generally not sufficient to
trigger catastrophe.

“The state of safety in any system is always
dynamic; continuous systemic change insures that
hazard and its management are constantly
changing.” – Richard I. Cook

Much of Richard Cook’s and
others work in resilience
engineering and safety and
human factors, is addressed at
operations and the role of
operators in the continuous
creation of safety: “Recognizing
hazard and successfully
manipulating system operations
to remain inside the tolerable
performance boundaries
requires intimate contact with
failure.” (Cook, 2000)

As system designers and
architects, we’re looking at
implications for design.

Complex Systems
(Guard Against) Fail(ure)

 Sources: “How Complex Systems Fail,” by Adrian Colyer, Morning Paper
Richard I. Cook, How Complex Systems Fail, https://how.complexsystems.fail/

65

Evolutionary Design

From: Barton and Haslett

• Design!
• Evolving design

 “A complex system that works is
invariably found to have evolved from
a simple system that worked. A
complex system designed from
scratch never works and cannot be
patched up to make it work. You have
to start over, beginning with a
working simple system."

 — John Gall

“complex systems will evolve
from simple systems much
more rapidly if there are
stable intermediate forms
than if there are not.”

— Herbert Simon

 While “It's the thing that will eventually kill your project if you
do it wrong” sounds intimidating, systems don’t spring forth
fully-formed in a moment.

 As designers, we’re shaping the role the system plays in its
contexts, (hopefully) contributing more value than it uses,
captures, or extracts (in good senses or bad) to become and
remain viable, and even thrive. And this is an active, dynamic
learning process in which designers seek to understand the
system environments and how they are reshaping and
evolving (eg as new technologies enter the landscape, and new
uses are found, etc), and adapt the system to respond to
changes and discoveries. And feed back learning about system
vulnerabilities, and how to make the system more resilient, into
the design. It’s a process of forming theories of value and of
system design to fit the challenges faced and anticipated, and
testing hypotheses.

 Aside: The diagram (on the slide) is from a paper about
evolution in science, but holds a nice image for us (in systems
design/evolution), moving between synthesis and analysis and
synthesis, whole and part and whole. In the large, and in
smaller movements, continually.

Evolutionary Design

“A complex system, such as a
living organism or a growing
economy, has to develop its
structure and be able to
adapt that structure in order
to cope with changes in the
environment.”

— Paul Cilliers

66

Evolving Understanding and Design

“Code” Image Source: Eduardo da Silva

“After all, if architecture is
about a system’s being,
behaving, balancing, and
becoming, we should be clear
about “what is the system?”
and “what isn’t the system?”

— Charlie Alfred

 “The image [above] [..] In a nutshell: we focus on
understanding the structure and the dynamics of the system;
and furthermore we also look at properties that emerge from
the interactions of structure and dynamics (as in the right
hand rule from physics) — and also with context.” — Eduardo
da Silva

 [The image is a composite created by Eduardo da Silva (using
my tweet and … sketch, and his “code” for the insights)
https://esilva.net/articles/evolve_tech_orgs_using_sociotech]

 Due to this interaction of parts, wholes emerge and interact
within contexts (or situations, or other systems in ecologies or
ecosystems), and the context acts back and the system
adapts or is adapted (or exapted, if the containing/using
system is changing faster than the focal system). And so it
goes.

 The point, for design leaders, being that we’re seeking to
understand what the system is being and becoming, while
balancing demands and forces. As we look across the seams
and gaps and what falls between, we’re not only considering
the system we’re building, but the organization that is
reflected in the system (Conway’s Law) and the situation it
alters and is altered by.

Systems Evolve and Emerge

“Shops are for
Buying more stuff
for them” (kid at 7)
Worlds create worlds. “Systems
develop goals of their own the
instant they come into being”
(John Gall). Open systems put
energy into self-renewal and self-
repair, continuity or resilience.

67

Co-Evolutionary Design
 ‘Expert design is more a
matter of developing and
refining both the formulation
of a problem and ideas for a
solution in concert, in a
process called “co-evolution“’

 — Kees Dorst

• Design!
• Evolving design
• Starting

problems

And! We’re co-evolving the situation, too

 Donald Schön, Reflective Practitioner : Design is a "reflective
conversation with the situation" and "a conversation with
the materials of the situation" and "the situation 'talks back'
and [the designer] responds to the situation's 'talk back'"

 Fred Emery: "Such mutual determination can only be a result
of a process of co-evolution. Our perceptual and affective
systems have evolved so that we are, as a species adapted to
living in the environment the world provides. [..] We have
shaped that world with a view to it supporting the purposes
we consistently pursue."

 Winnograd and Flores: “The significance of a new invention
lies in how it fits into and changes this network. Many
innovations are minor—they simply improve some aspect of
the network without altering its structure. The automatic
transmission made automobiles easier to use, but did not
change their role. Other inventions, such as the computer,
are radical innovations that cannot be understood in terms
of the previously existing network. The challenge for design
is not simply to create tools that accurately reflect existing
domains, but to provide for the creation of new domains.
Design serves simultaneously to bring forth and to
transform the objects, relations, and regularities of the world
of our concerns”

Co-Evolutionary Design

”expert design involves a period
of exploration in which problem
and solution spaces are
unstable until (temporarily)
fixed by an emergent bridge
which identifies, or frames, a
problem-solution pairing.”

— Kees Dorst

 Quote source: Frame Innovation: Create
New Thinking by Design, Kees Dorst, 2015

"all systems are what emerges
over its history of adaptation to
stressors"

— David Woods

68

Decisions

Architecture

Systems

Design

Decisions

Software Architecture: Decisions

69

 While complexity may be associated with many parts, a pile of
sand, composed of many grains (parts), is not complex.
Relationships, interconnection, gives rise to complexity. And yet,
complexity as originally defined (in terms of composites of
entwined or related parts), including notions of intricacy, could
today be more associated with “complicated.” A mechanical watch,
for all its intricate, and intricately interconnected, parts, is
complicated, not complex. Generally, when we talk about
complexity and complex systems, we’re addressing not just “not
simple” or “not easily analyzed,” but nondeterminism in system
behavior, with interactions over time and changing contexts,
influencing the system in non-deterministic ways.

 Mereology (from the Greek μερος, 'part') is the study of system
structure: of the relations of part to whole and the relations of part
to part within a whole.

 That’s a very nice word you have there, but what’s it good for?
Well. It’s like this. When (system and software) architecture isn’t
defined in terms of “the important stuff” or “the stuff that’s hard to
change” or the “stuff that makes you fail, if you get it wrong,” it’s
defined in terms of structure. System structure; parts and relations
of part to part and part to whole. But we’re designing dynamic
adaptive systems in dynamic, shifting, evolving contexts. And we
can’t merely ignore that. Or ought not to.

"Roughly, by a complex
system I mean one made
up of a large number of
parts that interact in a
non-simple way. In such
systems, the whole is
more than the sum of the
parts, [..] in the
important pragmatic
sense that, given the
properties of the parts
and the laws of their
interaction, it is not a
trivial matter to infer the
properties of the whole.”

— Herbert Simon

 Complexity has to do with dynamic
(inter)relationships

Complexity
 complexity (n.)

 1721, "composite nature, quality
or state of being composed of
interconnected parts“

 Complex: from the Latin
complecti

 Completi: from com (“together”)
and plectere (“to braid”)

Etymology: https://www.etymonline.com/word/complexity

Mirriam Webster

Image source: Visual Complexity,
Manuel Lima

• Complexity

“yes, but”

Complexity: Parts and Dynamic Relationships

 Quote source: “The Architecture of Complexity,” Herbert Simon, 1962
Interesting read: “There’s no such thing as a tree (phylogenetically)”

70

Characteristics of Complex
Systems
 1. Complex systems consist of a large number of
elements that in themselves can be simple.

 2. The elements interact dynamically by exchanging
energy or information. These interactions are rich.
Even if specific elements only interact with a few
others, the effects of these interactions are
propagated throughout the system. The
interactions are nonlinear.

 3. There are many direct and indirect feedback
loops.

 — Paul Cilliers
 Source: “What can we learn from a theory of complexity?” by Paul Cilliers

• Complexity
• Complex

systems

 Complex systems are open,
exchanging information with context

 4. Complex systems are open systems—they exchange energy or
information with their environment—and operate at conditions far
from equilibrium.

 5. Complex systems have memory, not located at a specific place,
but distributed throughout the system. Any complex system thus
has a history, and the history is of cardinal importance to the
behavior of the system.

 6. The behavior of the system is determined by the nature of the
interactions, not by what is contained within the components. Since
the interactions are rich, dynamic, fed back, and, above all,
nonlinear, the behavior of the system as a whole cannot be
predicted from an inspection of its components. The notion of
“emergence” is used to describe this aspect. The presence of
emergent properties does not provide an argument against
causality, only against deterministic forms of prediction.

 7. Complex systems are adaptive. They can (re)organize their
internal structure without the intervention of an external agent.

 Certain systems may display some of these characteristics more
prominently than others. These characteristics are not offered as a
definition of complexity, but rather as a general, low-level,
qualitative description.”

"Since the nature of a
complex organization is
determined by the
interaction between its
members, relationships
are fundamental. [..]
The point is merely that
things happen during
interaction, not in
isolation.“

“Part of the vitality of a
system lies in its ability
to transform
hierarchies.”

— Paul Cilliers

Paul Cilliers: What Characterizes Complex Systems

 Source: “What can we learn from a theory of complexity?” by Paul Cilliers

71

 More Than Connections

 “A double pendulum executes simple harmonic motion (two normal
modes) when displacements from equilibrium are small. However,
when large displacements are imposed, the non-linear system
becomes dramatically chaotic in its motion and demonstrates that
deterministic systems are not necessarily predictable.” (harvard.edu)

 The human leg wouldn’t be much good if it was a simple double
pendulum. The knee is a hinge joint with a limited range of motion
(0, straight, to roughly 140 degrees).

“In a complex system,
the interaction among
constituents of the
system and the
interaction between the
system and its
environment, are of such
a nature that the system
as a whole cannot be
fully understood simply
by analysing its
components.”

— Paul Cilliers

 …

 “a double pendulum is a
pendulum with another
pendulum attached to
its end, and is a simple
physical system that
exhibits rich dynamic
behavior”

Gif from https://en.wikipedia.org/wiki/Double_pendulum

Dynamic Behavior

• Complexity
• Complex

systems
• Dynamic

behavior

“A complex system cannot be reduced to a
collection of its basic constituents, not because
the system is not constituted by them, but
because too much of the relational information
gets lost in the process.”

— Paul Cilliers

 Quote source: Complexity and Postmodernism, Paul Cilliers, 1998

72

Prerequisites of Complexity
 “Collier identifies three prerequisites of complexity: a
source of energy, gradients, and interactions that
convert some of the energy influx made available by
gradients

 [..]

 Collier’s first requirement is “a source of energy"

 [..]

 Harnessing energy is as important as the energy sources
themselves; it allows energy to flow, and flow is
necessary for order and structure to emerge. Collier’s
first requirement, a “source of energy,” therefore
implicates his second requirement, the presence of
gradients”

 — Alicia Juarrero

• Complexity
• Complex

systems
• Dynamic

behavior
• Prerequisites of

complexity

 Conditions for complexity

 “Complexity formation therefore requires more than just
a gradient; to evolve more complex dynamics, matter &
energy must be coordinated and organized into
coherent patterns

 [..]

 Coordination harnesses gradients by capturing energy
and converting it into persistent structure and order

 [..]

 Collier’s third prerequisite, interactions, can also be
subsumed under the general idea of constraint

 [..]

 Constrained interactions leave a mark. They transform
disparate manys into coherent interdependent Ones”

 — Alicia Juarrero

“Constraints are entities,
processes, events, relations, or
conditions that raise or lower
barriers to energy flow
without directly transferring
kinetic energy. Constraints
bring about effects by making
available, structuring,
channeling, facilitating, or
impeding energy flow.”

— Alicia Juarrero

Complexity Formation

 Source: “Context Changes Everything: How Constraints
Create Coherence,” Chapter 3, by Alicia Juarrero

“Connectivity and interaction
are necessary conditions for
the emergence of complexity”

— Alicia Juarrero

73

 Illustration of Constraints that Limit
 “The connection of the tibia and the peronei to the knee joint
constrains the movement of the lower leg in such a way that it
makes no sense to examine the tibia's physiology, for example,
independently of the knee. The tibia's connection to the knee gives
the former characteristics which it wouldn't have otherwise: it can
move in some ways but not others. The constraints which the
connections subject the lower leg to reduce the number of ways in
which the leg can move: it can bend backwards but not forwards,
for example. In this example a constraint is a reduction of the leg's
state space. This is the most common understanding of the term
"constraint" . “

— Alicia Juarrero, “Causality as Constraint”

 Decisions Reduce the Options Space
Decisions constrain — they eliminate options. Alicia Juarrero
observes that this is what we commonly mean by constraint — this
limiting or closing off of alternatives; this altering of the probability
distribution of available alternatives. But! In so doing, Alicia notes,
they make the system "diverge from chance, from randomness.“

Constraints are
limitations we need to
be aware of. They
restrict choices open to
us.

 But decisions constrain…

Constraints.. Constrain

 ‘Limiting or closing off
alternatives is the most
common understanding of
the term “constraint.”’

 — Alicia Juarrero

Image from video posted by Will Evans, from LeanUX 2015

• Complexity
• Complex

systems
• Dynamic

behavior
• Prerequisites of

complexity
• Constraints

contrain

“The notion of a
constraint is not a
negative one. It's not
something which
merely limits
possibilities, constraints
are also enabling.”

— Paul Cilliers

74

Yes, Constraints Restrict, But

 “But if all constraints restricted
a thing's degrees of freedom in
this way, organisms (whether
phylogenetically or
developmentally) would
progressively do less and less.”

 — Alicia Juarrero

• Complexity
• Complex

systems
• Dynamic

behavior
• Prerequisites of

complexity
• Constraints

contrain
• But!

 Decisions change probability

 Constraints close off avenues, restrict the degrees of freedom, but if
this was all they did, systems, including organisms, would just do less
and less, as they became more constrained (Alicia Juarrero).

 From Alicia Juarrero’s talk (Deliberate Complexity Conference):
 Constraints are conditions or factors that raise or lower barriers to
energy, matter, and information flow – without themselves directly
transferring energy. Example: an organisms vasculature does not
impart energy directly; it channels and organizes energy flow.
Context dependent constraints enable complexity: some constraints
link separate and independent elements and processes such that
they become conditional on one another. They become inherently
context-dependent. Enabling constraints facilitate the weaving
together of interdependencies (among parts, and between parts and
context). Examples: synchrony, entrainment, alignment. Enabling
constraints self-organize interdependent, coherent, coordination
dynamics (to create/enable new coherent dynamics). As a result, a
complex system is embedded (not just plunked) in a context
(temporal as well as spatial).
Source: Video of Alicia Juarrero’s talk at the Deliberate Complexity
online conference in 2022: Complexity is not Complication,
https://www.youtube.com/watch?v=WmtjQZCIsqY

"Think of constraints not
just as a restrictions, but
as changes in probability
of what's going on,
changes in the likelihood
of something"

— Alicia Juarrero

 Also recommended: Constraints that Enable Innovation - Alicia Juarrero
https://vimeo.com/128934608

While True, …

Rules of the road are
constraints that enable
high levels of agency as
cyclists and drivers
choose and navigate to
individual destinations.

75

Constraints Enable
 “constraints not only reduce the
alternatives — they also create
alternatives. Constraints, that is,
can also create properties which a
component exhibits in virtue of its
embeddedness in a system,
properties it would otherwise not
have.”

 — Alicia Juarrero
“Causality as Contraint”

• Complexity
• Complex

systems
• Dynamic

behavior
• Prerequisites of

complexity
• Constraints

contrain
• But! Constraints

enable

 “Constraints not only reduce alternatives—they also
create alternatives." If we take (Alicia Juarrero's
example of) language, the constraints of syntax allow
meaning to emerge.

Context-sensitive constraints [..]
synchronize and correlate
previously independent parts into
a systemic whole

— Alicia Juarrero

 Constraints reduce some
options, and create others

Constraints Create Alternatives

By curtailing the potential
variation of component behavior,
[..] context-dependent
constraints paradoxically also
create new freedoms for the
overall system.

— Alicia Juarrero

 “parts interact to produce novel, emergent wholes; in
turn, these distributed wholes as wholes regulate and
constrain the parts that make them up”

 “The constraints that wholes impose on their parts are
restrictive insofar as they reduce the number of ways in
which the parts can be arranged, and conservative in
the sense that they are in the service of the whole.”

 — Alicia Juarrero, “Dynamics in Action: Intentional
Behavior as a Complex System”

Juarrero (1999) distinguishes governing from enabling
constraints: governing constraints regulate and restrict,
while enabling constraints make a new level of
complexity possible.

Wholes arise from Constraints, and
Wholes give rise to Constraints

76

Decisions Constrain and Enable

• Decisions
constrain

What are the
implications?

“In Context Changes
Everything, Juarrero shows
that coherence is induced
by enabling constraints [..]
and that the resulting
coherence is then
maintained by constitutive
constraints.”

— MIT Press

Image source: Jabe Bloom (on twitter)

 Architecture is decisions! Decision constrain,
and in constraining, enable

 Decisions, making choices and constraining the
subsequent design space, is both inevitable and
necessary. Decisions about modularity and coupling,
decisions about mechanisms to support capabilities,
decisions about technology we will integrate and depend
on (within the system, or our development and
operations environments), all contribute to our ability to
create and evolve a system that is sufficiently stable to
exist, yet dynamic and evolving.

“The causal mechanism at work
between levels of hierarchical
organization can best be
understood as the operations of
constraint”

— Alicia Juarrero

Decisions

Systems – but make it Wicked!

 The systems we are designing interact within
environments, that act back on the system. As the
system begins to emerge, it also starts to act back on
itself, placing constraints on its elements, to enable
connections and flows, and so on. This “placing
constraints on” may be more intentional and
considered, or more accidental. The sociotechnical
system is also placing constraints on itself, to foster
coherence. Protocols, standards, decisions and other
agreements. Creating common ground by
collaboratively modeling, so that a shared language
and shared understandings emerge. “coherence is induced by enabling

constraints, not forceful causes,
and that the resulting coherence
is then maintained by
constitutive constraints.
Constitutive constraints, in turn,
become governing constraints
that regulate and modulate the
way coherent entities behave.”

77

Decision Making
 ‘You need strategies that
help rule things out. That's
the opposite of saying,
“This is what my gut is
telling me; let me gather
information to confirm it.”’

 — Gary Klein

• Decisions!

Decisions Are Perfectly Rational, Right?

 So how do we approach consequential
decisions?

”Rigor is not a substitute
for imagination.”

― Gary Klein

” I worry about leaders
in complex situations
who don't have enough
experience, who are just
going with their intuition
and not monitoring it,
not thinking about it.”

― Gary Klein

How we think decisions are made: we list and weigh reasons. And
demonstrate the superior approach to take. Gary Klein makes the case
that experts tend not to do this (though novices might), especially not
under (time) pressure. Still, when it comes to decisions of consequence
to organizations and system design, we do well to better understand
what’s at stake, what’s impacted and how, as well as what options or
solution approaches we might take.
The rational in rationalize is a head-fake. And yet. We want to develop
our reasons and reasoning. Make decisions with significant impact
explicit, and probe and improve them.

78

A Simple Model of a Decision

What we will do,
what approach we will take

• Decisions

 So, about decisions, …

Decisions
 So we’re talking about how we make better consequential (system
architecture, organizational architecture, strategic, etc.) decisions. So let’s
start there. With a decision, which we’ll model, as one does, with black box
or abstraction.

 How does a decision come into view? In the previous module (Sense/Make
Sense), we explored situation or context awareness and orienting to the
landscape, identifying where action and leadership is needed. It is helpful
(as we explore and clarify, and also as we document, the decision) to
briefly describe the situation prompting the decision.

The Anatomy of a Decision
 To understand something like a decision, and what
factors in making a consequential decision, the
structure (and diagram of structure) isn’t enough
— though how we structure our thinking about
decisions, focuses attention and indicates what we
seek to bring into view, for consideration. It helps
to understand and frame the problem or situation,
separately from identifying the solution or
decision options, and determining relative fitness
to the situation.

 Of course, whether a decision “sinks or swims,”
depends on much, including the socio-political
context, and how we influence and are influenced. Image Source:

https://en.wikipedia.org/wiki/Anatomy

79

Decision: Outcome

To achieve some outcome (have
some stated positive impact, meet a
goal), address some issue or
challenge

• Decisions
• Sought

outcome

 If our decision is about our response, about
what we will do, what do we want to achieve?

 In the context of a technical decision, an outcome may be a
capability we need to build for users or the business or for
the system (logging, or co-ordination and consistency
mechanism, etc.), or a system property (quality attribute) we
want to improve (scaling or latency or some other aspect of
availability as we improve as demand grows or grows in new
regions, etc.). Or it may be some issue (or risk) we face in the
dev or devOps organization, that we want to address for
ourselves, and see benefit to others in the organization. (This
is often enough the case, that some decision templates use
“issue” rather than “outcome” and it may even be separated
out.)

 The outcome sought, frames the problem that the decision
addresses. It identifies what we are concerning ourselves with
(as we explore and make this decision), and why.

 The framing of the outcome or problem is itself a (set of)
judgment call(s), as it helps bound the consideration space or
frame the situation that we are attending to. Because it
bounds the consideration space, we want to hold the frame
somewhat loosely, at least to begin with, as we explore
options (and possible reframings that bring other options
into view).

 Speaking of judgment calls, can we stop here?

Outcomes
For intentional, considered
decisions, what is our
intended outcome, goal, or
objective? What does the
decision seek to make true
in this context or situation?

 From Indu Alagarsamy, Document your
product and software architecture decisions,
https://domainanalysis.io/p/document-your-
product-and-software

80

Experience

• Decisions

 “Their experience let them
identify a reasonable reaction
as the first one they
considered, so they did not
bother thinking of others.
They were not being perverse.
They were being skillful.”

 – Gary Klein

 Gary Klein and colleagues have studied experts and
the way they make decisions, coming to the
conclusion that often experts make decisions not by
extensive analysis, but based on experience
recognizing situations, and reaching for a workable
solution in that situation, and proceeding. And he
points out this isn’t being perverse, it’s being skillful.
So where we have seen something play out multiple
times, and have learned a reliable response set, that
may be enough. We make all manner of satisficing
decisions in the course of doing things.

 In an interview with McKinsey’s The Quarterly:

 Gary Klein: It depends on what you mean by “trust.”
If you mean, “My gut feeling is telling me this;
therefore I can act on it and I don’t have to worry,”
we say you should never trust your gut. You need to
take your gut feeling as an important data point, but
then you have to consciously and deliberately
evaluate it, to see if it makes sense in this context.
You need strategies that help rule things out. That’s
the opposite of saying, “This is what my gut is telling
me; let me gather information to confirm it.”

Expertise and Decisions

 Naturalist decision making and Recognition-
primed decisions (RPD).

 Source*: https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-
insights/strategic-decisions-when-can-you-trust-your-gut

 The Quarterly*: “Is intuition more reliable under certain
conditions?”

 Gary Klein: “We identified two. First, there needs to be
a certain structure to a situation, a certain
predictability that allows you to have a basis for the
intuition. If a situation is very, very turbulent, we say it
has low validity, and there’s no basis for intuition. [..]
The second factor is whether decision makers have a
chance to get feedback on their judgments, so that
they can strengthen them and gain expertise. If those
criteria aren’t met, then intuitions aren’t going to be
trustworthy.

 Most corporate decisions aren’t going to meet the test
of high validity. But they’re going to be way above the
low-validity situations that we worry about. Many
business intuitions and expertise are going to be
valuable; they are telling you something useful, and
you want to take advantage of them.”

 Daniel Kahneman: “One of the problems with expertise
is that people have it in some domains and not in
others. So experts don’t know exactly where the
boundaries of their expertise are.”

81

• Decisions
• Sought outcome
• Alternatives

 “If you haven’t thought of
three possibilities, you
haven’t thought enough.”

 — Jerry Weinberg

Decision: Alternatives

 However. For strategically or architecturally significant decisions, we
want to explore what our options are.

 ‘"architecturally significant" decisions: those that affect the structure,
non-functional characteristics, dependencies, interfaces, or
construction techniques’

 “One ADR describes one significant decision for a specific project. It
should be something that has an effect on how the rest of the project
will run.”

 — Michael Nygard, Documenting Architecture Decisions
 That is, if we’re making a technology choice that will shape other
choices in an impactful way, or we’re coming up with, designing, an
approach to building a system capability or mechanism, or
addressing some critical issue or challenge, we want to be intentional
about it, to bring consideration to bear, and also to be able to visit
and revisit our reasoning. So we bring options or alternatives into
view. Moreover, as pointed out by Wisen Tanasa, it’s helpful to
consider whether a hybrid of what we’d thought of as alternatives,
positions us better in the tradeoff space.

 Each option considered, is described briefly, outlining trade-offs, and
impact. Typically the option proposed/adopted comes first in this list.
You may want to describe why the other alternatives were not
chosen, as it is part of the reasoning/argumentation (later when
looking back at the decision, others can see which objections were
already taken into account). — source?

 While we’re at it, think of 3 ways we might be wrong!

Architecturally Significant

 The discipline of creating and evaluating
choices

” Eric Evans had
recommended having at
least 3 options in a
proposal
1 option leads to
evaluation of that
option: yes/no
2 options lead to
comparisons of A vs B
3 options suggest there
are a set of possible
solutions, of which there
may be more.”

― James Maier

82

Forces and Constraints: Decision
 “A force [..] is [..]
anything that has a
potential non-trivial
impact of any kind on an
architect when making
decisions.”

 — Uwe van Heesch et al

clarify the context
of decision

 Whether we’re weighing options or developing
alternative approaches, the situation has a bearing —
we need to identify and characterize the relevant
forces, contributing factors, governing variables,
complications, assumptions, constraints.

 “A force [..] is [..] anything that has a potential non-
trivial impact of any kind on an architect when
making decisions.” We’re using force to mean
something impactful, impinging on an architectural
problem. Forces arise in the system or its
environment — the operational, development,
business, organizational, political, economic, legal,
regulatory, ecological, social, etc.) context or
situation.

 “Forces arise from many sources; most often from
requirements, but also from constraints, architecture
principles and other “intentions” imposed upon the
system; including personal preferences or experience

Forces, Considerations, What Impinges
 of the architect(s) and the development team; and
business goals such as quick-time-to market, low
price, or strategic orientations towards specific
technologies (see [9] for an empirical study on
influence factors on software architecture).”

 “The architect evaluates each architectural
decision alternative in the context of the forces. As
a result of the evaluation, a force can have a
positive, negative, currently unknown, or neutral
impact on the architect with respect to a decision;
it either attracts the decision maker towards a
specific decision alternative, or it repels the
decision maker from an alternative, or it has no
effect.”

 — Uwe van Heesch, Paris Avgeriou, Rich Hilliard
Forces on Architecture Decisions – A Viewpoint

 Identify forces; what are the shaping
considerations in this situation

83

Designing a Bridge: Forces

 What forces are relevant, and how does
our design behave under those forces?

 “Masonry is strong when
you try to squeeze it and
weak when you try to
stretch it. In the jargon,
it’s strong in compression
and weak in tension.
That has consequences.”

 — Brian Marick

 “Suppose you’re required to build a bridge, meaning a
horizontal surface over some empty space. The simple
solution would be a series of walls to hold up the floor of the
bridge. OK, but now consider a horizontal floor span going
from one wall to its neighbor. The span is supported on its
ends, but unsupported in the middle. Gravity pulls down on
the middle, creating tension. Since masonry is weak in
tension, you’d have to have short spans and a lot of walls,
which would be expensive, plus awkward if you want any
traffic to go under the bridge – like, say, boats going down a
river that it spans.

 The arch is a clever solution to this problem. Consider an arch
made out of bricks. Each brick mostly presses down on the
brick next to and below it, meaning that all the bricks are in
compression. The full weight of the structure supported by
the arch is delivered to the feet of the arch. Some of the force
is vertical, which is opposed because the arch is sitting on the
ground. Some of the force is horizontal, which can be
opposed if there’s the leg of another arch of the same weight
pushing against it - like in a bridge with multiple arches. Or,
for the end two arches of the bridge, by anchoring them to a
strong enough foundation. Essentially the forces transferred
down the arch to the ground are balanced by forces *from*
the ground, and it’s all compression, all the time.”

 Source: Brian Marick, “Christopher Alexander’s forces”

Forces (in bridges and buildings)

 A quick look at forces in physical structures,
to understand by analogy

Forces push or pull, attract
(gravity) or repel, inhibit
(friction or drag, resistance)
or propel (applied, spring),
can be used to hold in place
(tension, compression, ..)

“a flying buttress [..] uses
the power of downward
compression to balance an
outward force. (Or
something like that - I'm
not an architect.)”

― Brian Marick

84

Potential Forces
What shapes this decision space?
• user or business need and criticality
• experience/capabilities
• system properties (availability, reliability,

observability, auditability, ..)
• Costs (cost to build, license costs, etc.)
• Time: how long will this last? (short term

impact, or something users/engineering will
have to live with for long time)

• Time: engineering effort

• Time: time to value; feedback loops and
learning cycles

• complexity., technical challenges

• team autonomy, independence, co-
ordination costs

• consistency (UX, devX, OpX)

Image source: Uwe van Heesch, et al: Forces
on Architecture Decisions – A Viewpoint

 What attracts or repels, inhibits or induces, creates
friction, drag and inertia or flow, prevents or fosters,
impacting the outcome in good or bad ways?

What pushes or pulls, distorts or organizes,
resists or attracts, …

 As we’re making a decision, and then as part of conveying it,
we want to understand (and convey) what has substantive
bearing on the decision. This means characterizing the
situation in terms that are relevant to the decision.

 Whether we call them forces (or “forces” as an analogy) or
factors or criteria, we’re exploring what matters (in the use,
development, operations, or broader context or situation),
and how much it matters. And how that interacts. And what
doesn’t matter, that we thought might, and why.

 What concerns do stakeholders have, that we need to take
into account and address with this decision? Now, and as
various stakeholders have to “live with” it. What makes a
difference to the outcome and attributes of the solution, and
how do the various alternatives we’re weighing impact these
concerns and goals (and objections)?

 We want to identify what is consequential or significant to
this decision, and get this out where we can see it, and
reason about it and do so together, and bring others in to
the process of identifying what matters and what interacts,
and how we can best resolve the forces and tradeoffs (due to
interacting and even conflicting goals and constraints).

Note about the diagram on slide: F2 is development of
strategically important capability ― it will become critical to
the business, given the evolution of the system (increasingly
large datasets, complicated queries, …).

Forces, Considerations, What Impinges

 Identify what matters, what characterizes the “problem” or
situation and impacts the solution or decision we’re proposing

What matters to our
situation? To our
stakeholders, now and over
time?

 Causal loop diagrams can be used to
explore effects (what is impacted, and
how). Image source: Xavier Briand, What is
technical debt? And how to talk about it?

85

Decision: Consequences
 nothing you do has
just one effectsituation

future
situation

 Further, in addition to the outcome or positive impact we’re
directing our attention to achieve by making this decision, and
the forces and demands impinging on it, we also need to take
into account, and weigh, the effects or consequences of the
decision and arguably, the consequences of the consequences
or second order effects.

 “Second-order thinking is the practice of not just considering
the consequences of our decisions but also the consequences
of those consequences. Everyone can manage first-order
thinking, which is just considering the immediate anticipated
result of an action. It’s simple and quick, usually requiring little
effort. By comparison, second-order thinking is more complex
and time-consuming. The fact that it is difficult and unusual is
what makes the ability to do it such a powerful advantage.” —
fs.blog

 Consequence Scanning is an important approach to
discovering the wider impacts of our technical products and
choices. Ask:

• What are the intended and unintended consequences of
this product or feature?

• What are the positive consequences we want to focus on?

• What are the consequences we want to mitigate?

 More at https://doteveryone.org.uk/project/consequence-
scanning/

Consequences and Second Order Effects

 In creating and evaluating options, we’re
thinking about forces and consequences

“If you give a mouse a
cookie,”
“he’s going to ask for a glass
of milk.”
“When you give him the
milk,”
“he’ll probably ask for a
straw”
“When he’s finished, he’ll ask
for a napkin.”
“Then he’ll want to look in the
mirror
To make sure he doesn’t have
a milk mustache.”

— Laura Numerof

86

Consequences: What Changes?
 “a consequence is just a
statement about how the future
will differ from the past”

 — Michael Nygard

 In a blog post* that is a great companion to his post describing
how he recommends documenting architecture decisions,
Michael Nygard observes that we tend to focus on pros and cons,
and can lean into justifying the choice we have or want to make.
He notes:

 “Instead, I suggest we first describe simply consequences, not
benefits or problems. That’s because a consequence is just a
statement about how the future will differ from the past. [..]

 Whether you judge that consequence to be a “pro” or “con”
depends entirely on your relationship to the change. If you
perceive the change as an improvement to status quo then you
call it a “pro”. If you don’t like the version of the future which
includes that consequence, then you call it a “con”. That means
labelling a consequence as a benefit is subjective. It describes the
relationship of you and the change.

 What about the changes that you don’t particularly like or dislike?
The ones that are neither “pro” nor “con”? Most of the time those
don’t get written down at all!

 I recommend that you begin by listing the consequences. Find all
the ways that the future will be unlike the past, if we choose that
path. Look for second-order effects — the consequences of the
consequences.”

How Does the Decision Change Things?

 To think more clearly about consequences,
start with “what will be different, for whom?”

 * Michael Nygard, Consequences
are not Pros or Cons,
https://www.michaelnygard.com/b
log/2020/06/consequences-are-
not-pros-or-cons/

“As you make this list of
consequences, try to
avoid coloring your
thoughts about the
consequences by what
your intentions are. [..]
once the change is made
your intentions are
irrelevant. Only the
resulting system state
matters.”

— Michael Nygard*

Technical Decisions

87

Tip: Document Decisions
 Title: short noun phrase

 Context: desired outcomes and the forces at play
(probably in tension)

 Decision: describes our response to these forces

 Status: proposed, accepted, deprecated or superseded

 Consequences: describes the resulting context, after
applying the decision

From: Michael Nygard, Documenting Architecture Decisions, Nov 2011

 Alternatives

aka thinking it through

 ADRs are a way to share decision reasoning. Examples of ADRs
at:
https://web.archive.org/web/20210506014629/https://upmo.c
om/dev/decisions/0010-som-synthetic-monitoring.html

 Michael Nygard’s Template:

 Title These documents have names that are short noun
phrases. For example, "ADR 1: Deployment on Ruby on Rails
3.0.10" or "ADR 9: LDAP for Multitenant Integration"

 Context This section describes the forces at play, including
technological, political, social, and project local. These forces
are probably in tension, and should be called out as such. The
language in this section is value-neutral. It is simply describing
facts.

 Decision This section describes our response to these forces.
It is stated in full sentences, with active voice. "We will …“
Justify the decision.

 Consequences This section describes the resulting context,
after applying the decision. All consequences should be listed
here, not just the "positive" ones. A particular decision may
have positive, negative, and neutral consequences, but all of
them affect the team and project in the future.

 The consequences of one ADR are very likely to become the
context for subsequent ADRs. This is also similar to
Alexander's idea of a pattern language: the large-scale
responses create spaces for the smaller scale to fit into.

Architecture Decision Records

 All of this is summarized in Michael Nygard’s
template for recoding architecture decisions

“In practice, our projects
almost all live in GitHub
private repositories, so we can
exchange links to the latest
version in master. Since
GitHub does markdown
processing automatically, it
looks just as friendly as any
wiki page would.”

— Michael Nygard

“Writing about your decision
forces you to explain your
thinking.” — fs.blog,
Creating a Decision Journal

88

TECHNICAL
LEADERSHIP

Decisions Are Trade-offs
 “For me, “engineer” means
knowing that all decisions are
tradeoffs. It means considering
both upsides & downsides of each
technical choice, and doing so
with explicit consideration of the
larger system context.”

 – Sarah Mei

 As a manager in IT or product development, our decisions don’t
just impact teams but the systems they create. We see this in
Conway’s Law:

“The basic thesis [..] is that organizations which design systems [..]
are constrained to produce designs which are copies of the
communication structures of these organizations.”

 -- Melvin Conway, How Do Committees Invent?, 1968

 Likewise, as an architect, the choices we're making are technical,
but the impacts don't remain neatly in the technical space. The
tradeoff space isn't just about qualities that impact developer
experience, or security properties or operational complexity, but
user experience and partner experience through properties of
the system in use. And more. So we investigate the upsides and
downsides of our technical decisions, in these various contexts.

 We want to surface the trade-offs inherent in our decisions, both
to better understand the decision space, and because we may be
able, or need, to contend with the downsides of these decisions
explicitly, to offset them.

“When you build a bridge,
you don’t build it as a
perfect structure that will
never collapse. Instead
you build it to withstand
500 year winds, 200 year
floods, 300% expected
maximum load, etc. If you
didn’t make these design
trade-offs, every bridge
would be solid concrete
[..] Engineering is all about
making these
compromises”
 Pragprog.com/articles/the-art-of-
tradeoffs

Decisions Entail Tradeoffs and Tradeoffs
Don’t Stay Their Lane ¯_(ツ)_/¯

 Decisions have upsides and downsides

89

An Example
 Read (next slide) and identify

• the Decision

• the Outcome(s)

• Forces (identified, and not)

• Consequences (identified,
and not)

 A remote presentation like this has some advantages in terms of
screen distance, but for those who can’t read the screen we will recap
some of the main points in just a bit. Now, though, we will take a
moment to allow a chance to read the text on the next slide, and
identify the decision, the outcome, the forces impinging on this
situation (those identified in the description, and those your
experience is prompting) and consequences or effects of this decision.

We’re going to consider an example (next slide)

 Leadership isn’t inherently about hierarchy.
Though hierarchy is not irrelevant.

 To make better decisions, we need to weigh and resolve the inherent
tradeoffs — the upsides and downsides of the choice or approach.

 That is, to make tradeoffs intentionally, we need to identify and
characterize the tradeoff space. What is relevant to the decision is a
(set) of judgment calls. How we balance and resolve the tradeoffs is
again a set of judgment calls (though of course there may be
precedent in the industry, or in our experience, that gives us more to
go on).

Weigh tradeoffs
“strive for the least
worst combination of
trade-offs”

— Neal Ford et al

 Design Alternatives image from:

90

Mattias Petter Johansson, on Quora (2017)

Spotify

Example

 Exercise: Read this narrative description of a
decision

 Let's spend a moment and read the discussion (see slide above) from
Mattias Peter Johansson on Quora, about Spotify (written in 2017).
Ref: https://www.quora.com/How-is-JavaScript-used-within-the-
Spotify-desktop-application-Is-it-packaged-up-and-run-locally-only-
retrieving-the-assets-as-and-when-needed-What-JavaScript-VM-is-
used

 One thing to note, is that this was written 5 years ago, about the
past; things changed.

91

Mattias Petter Johansson, on Quora (2017)

Spotify

–

+

Decision

Team
autonomy

Divergence

–

 Our point here isn’t to criticize Spotify’s choices in
that timeframe and point of the evolution (in the
market and of the technology and organization),
but to appreciate how, even in this narrative
format, so much of the decision and considerations
are being conveyed, and to explore the decision.

 The decision: to use Spotlets, or small, self-
contained apps within their own iframe

 The outcome: increased team independence or
autonomy

 Positive effects (or forces): reduced cross-team co-
ordination; speed of movement (so speed of
learning)

 Negative effect (or force): duplicate instances of
different versions of libraries

 Negative consequence: reduced cross-team
communication; divergence among teams as a
result

 (These social costs and consequences are not just
as a result of this decision, but the decision is part
of a reinforcing loop.)

 Negative consequence (not surfaced; potentially
future): multiple versions of licenses and
purchasing and security headaches (knowing what
patches to roll out where)

What do we Notice?

 What did you notice?

 Tradeoff? size of songs so dominates size of app,
that they could make this decision to support team
autonomy without perceived cost to user.

 We see that allowing duplicate instances of
different versions of various libraries enabled
Spotify squads (teams) considerable independence,
removing the need to coordinate with other squads
on libraries and versions. Because song size so
dominates considerations that it generally falls
beneath the threshold of sensitivity for the user, the
tradeoff of team freedom for app size is easily (in
their view) within the design acceptance envelope.

 So in this case, a technical decision is being made
for organizational gain (lowering team coordination
costs and increasing team's degrees of freedom) at
the expense of app size, which works as long as it's
below the app user's tolerance threshold for
resource consumption.

 We’re building econo-sociotechnical systems,
within econo-sociotechnical systems, and we need
to factor this in, as we scan for forces, constraints
and consequences (that we factor in as forces).

92

Impact of the Decision

UX and cost to user
(/customer) devX and cost of change

Experience of others,
including security and
operations, and cost
to business

… and impact on other
humans/creatures/planet

Who gains? Who feels the pain? When
(e.g., gain now versus pain in a
year)?

 What this example highlights, is “what’s going on” in terms of what is
being paid attention to in the decision, what the forces and tradeoffs
are and what has not been drawn into explicit consideration, possibly
because it isn’t yet a significant noticed force. And in particular, this
important point: impacts (positive outcomes, as well as other positive
and negative effects) and consequences (including downstream and
future consequences) are borne by different sets of “stakeholders” –
not just different persons or internal groups, but users (downloading
the app and listening to songs), customers (paying bills), these
people in different regions of the world, with different bandwidth and
cost constraints. As well as different stakeholders within the
organization, and not limited to developers.

But we would draw on experience to point out what to be watching
for, as the situation evolves.

Different Impact in Different Areas

 Leadership isn’t inherently about hierarchy.
Though hierarchy is not irrelevant.

“Good engineering is
less about finding the
"perfect" solution and
more about
understanding the
tradeoffs and being
able to explain them.”

— Jaana B. Dogan

[Reflecting on the Ackoff video] “The systemic cultural and societal impacts of the
software we build: I feel that especially in venture capital backed startups, the software
industry is prone to not thinking in systems when it comes to the impact of what their
products are doing — as opposed to the return on investment they have. From the harms
of social media on mental health, to discriminatory bias in AI, I see many parallels with
the notion of “doing the wrong thing right.” — Mike Stallard

93

Decision Space and Pareto Front

 “Tradeoffs only occur when
you reach [a] Pareto frontier.”

 — Donald Reinertsen

 What we’re seeing in this example, is that, with respect to team
degrees of freedom and app size on the one hand, and song size and
by implication user experience and space and cost concerns, a Pareto
Front has not being reached. These things aren’t being traded off for
one another. We can improve team independence without
decreasing user experience in an appreciable way.

Pareto Front
“A threshold effect exists
when there is a critical
level of effort necessary to
affect the system. Levels
of effort below this
threshold have little
payoff.”

— Richard Rumelt

 From John Cutler*:

‘Ask an everyday driver about driving tradeoffs, and you'll likely hear
something like, "When you go around a corner, you need to trade off
speed and control." The mental model is "slow down just enough to
keep control around the corner.“

A professional driver will think differently. Their mental model revolves
around tire grip and temperature, the optimal racing line, throttle
control, suspension, aero settings, brake balance, tuning the car for the
track, and weight transfer management. They might point out that the
amateur isn't exactly wrong, but they might say, "At the end of the day,
it boils down to tire friction, aerodynamic limits, mechanical limits, and
human limits.“

Amateurs aren't entirely wrong; they're recognizing some inherent
limitations. What differentiates professionals is their ability to approach
these limits more closely and consistently without exceeding them. They
have a deeper understanding of where the boundaries are and how to
navigate them.’

Experts and Seeing Tradeoffs

 * John Cutler, “Dear Executive...”
2023,
https://cutlefish.substack.com/p/tb
m-250-dear-executive

 Tradeoffs may only kick in after some threshold
has been reached

94

Trade-offs
 Space-Time Trade-Off

More space More time

Less time Less space

 Spotify Example:
 Size of app, to

 Co-ordination overhead between teams TECHNICAL
DECISIONS

 “Usually, a TMTO is developed to improve the speed of an
algorithm by utilizing one-time work, which results in increased
storage (memory) requirements when the resulting algorithm is
executed. Of course, it is also possible to work in the opposite
direction by reducing the one-time work at the expense of more
work each time the algorithm is executed. The goal is to balance
the one-time work (memory) requirement with the speed of the
algorithm (time).”

— Mark Stamp, Once Upon a Time-Memory Tradeoff

 A classic illustration of the trade-off entails using a lookup table
(uses upfront work and a lot of space to enable a fast lookup when
the result is needed) versus calculating on demand (uses little
space, but can take a long time at the point of demand, depending
on the calculation).

 Another space-time trade-off arises in data storage. If data is
stored uncompressed, it takes more space but less time than if the
data were stored compressed.

 We’re talking about this as a space-time trade-off, but it translates
into a cost-performance (i.e., user experience) trade-off.

 Trading X for Y

Space-Time or Time-Memory Trade-Off
“A trade-off (or tradeoff)
is a situational decision
that involves
diminishing or losing one
quality, quantity or
property of a set or
design in return for gains
in other aspects. In
simple terms, a tradeoff
is where one thing
increases and another
must decrease.”

— wikipedia

 What are we giving up and what are we gaining? Do
different groups gain and feel pain? Over different
time horizons?

95

Trade-offs: Dyads
Control Autonomy

Global perspective Local responsiveness

Control Co-operation

More consistency More flexibility

Co-operation Autonomy

More synergy More accountability TECHNICAL
DECISIONS

 Evaluating two by two

Trade-Off Dyads (Picturing the Dilemma)

“For example, continuous evolution pulls against product stability[..]. Low-
level decisions pull against strict process control”

— Eberhardt Rechtin and Mark Maier

 We have a trade-off when
design variations improve one
dimension (something we value,
like a performance metric), but
diminish another. Factor in
multiple of these trade-off
dimensions, and there is no
unique optimal design; the
choice lies in what is valued in
that context.

 By drawing the trade-offs out —
making them visible — we can
make judgments, and subject
them to discourse to better
assess impact and value.

 Many trade-offs can usefully be
thought of in terms of dyads:
performance and cost (another
way to frame the space-time
trade-off); data confidentiality or
security (via encryption) and
performance; safety and cost;
structural mass (for physical
structures) and safety; usability
or convenience and security; etc.

 In Seeing Organizational
Patterns, Robert Keidel
considers organizational
structures and interaction
dynamics, and pivotal trade-offs
underlying organizing choices.

 These could be presented as the
dyads shown (slide above).

 While considering pair-wise trade-
offs can help understand the
design space, it can obscure the
tensions when multiple variables
are simultaneously in play. Keidel
points out that “every
organization must blend
autonomy, control, and
cooperation.” The trade-off space
(the design options), is more
usefully visualized as a triad, or
triangle.

 The multiple library versions
example earlier, is missing impacts
(eg security implications).

96

Trade-offs: Triads
 “most organizational issues are a
balance of three variables:
individual autonomy, hierarchical
control, and spontaneous
cooperation. By learning to
frame issues as trade-offs among
these design variables, one can
see underlying patterns”

 – Robert Keidel
TECHNICAL
DECISIONS

Organizations that are autonomy-
based have as their distinctive
competence adding value through
solo performers; they are truly star
systems. Example: any first-rate
university.

 Control-based organizations
compete on the basis of their
ability to reduce costs and/or
complexity through global
coordination. Authority,
information, and initiative reside
chiefly at the top levels.

 A cooperation-based organization
builds synergy across teams. The
distinctive organizational
competence is innovation through
cooperation.

“Equally dangerous is
an overemphasis on a
single variable to the
point that the other
two are neglected.
Autonomy becomes
problematic when a
relatively
freestanding part-
individual or
organizational unit-
overdoes its own
thing.”
— Robert Keidel

A Trilemma of Trade-offs

 According to Keidel, any particular organization will focus on at most two
of autonomy, control, and co-ordination. (Attempting all three is an
unstable form.) These are the organizational forms he identifies:

 Probably the most familiar
example of an autonomy/control
hybrid is the divisionalized
corporation.

 A control/cooperation hybrid may
be described as a "humanistic
hierarchy.“ Top-down control
remains essential but every effort
is made to meld it with voluntary,
lateral processes among
individuals, functions, and units.

 The autonomy/cooperation has
the oldest roots. This combination
goes back to the craft
organizations of the late 18th
century, which featured a blend
of individual initiative and
informal cooperation.

 Seeing Organizational Patterns, Robert Keidel

 But really, it’s a trade-off space. An
example with more than two variables

97

• team independence,
autonomy; devX

• speed (to market)
• lower inter-team

communication costs

• system integrity
(common/consistent
UX; consistency and
coherence)

• simplifies some things
• more inter-team

communication
(potential for shared
understanding, …)

Trade-off Space
small self-
contained
web apps

single web app

More of this means less of this
(ceteris paribus)

 When we are deciding among alternatives, we’re deciding
among the clusters of effects and consequences of those
alternatives (like modular monolith or microservices; small
self-contained web apps or single web app; etc.).

 While the concept of “to decide” holds within it the notion
of what we’re deciding not to do, along with what we are
deciding to do, part of (what we factor in) the trade-off
space may include what it takes to mitigate the negative
effects or downsides of the approach we go with.

 Examples

 We might seek to minimize downtime with rapid failure
detection and recovery, but this incurs the overhead of
continuous monitoring and detection. Additionally,
automated detection and recovery mechanisms may be
triggered by false positives (for example, a node acting as
if it has failed, when it's just running slowly for a moment)
or introduce performance degradation during failover.
Balancing the trade-offs involves optimizing detection
sensitivity and response times while minimizing false
alarms and impact on performance.

Choices Among Options
“Two key questions I always
advise people to reflect on [..]:
1. What happens if this
succeeds? Does it make the [..]
world better?
2. Who is harmed by the
changes this causes? What
would you choose to do if you
loved them?
Every single choice gets easier if
you know those answers.’

— Anil Dash

“A central tenant of the ecosystem approach is that the path to sustainability
is one of tradeoffs. Science can illuminate the tradeoffs but a resolution, that
is, the choice of path, is a political decision” — Michelle Boyle, et al

98

Design Force Field

TECHNICAL
DECISIONS

 Design has to balance tensions caused by different imperatives,
needs, and perceptions.

 “Some of competing technical factors are shown in [the figure in
the slide above]. This figure was drawn such that directly opposing
factors pull in exactly opposite directions on the chart. For example,
continuous evolution pulls against product stability; a typical
balance is that of an architecturally stable, evolving product line.
Low-level decisions pull against strict process control, which can
often be relieved by systems architectural partitioning,
aggregation, and monitoring. Most of these tradeoffs can be
expressed in analytic terms, which certainly helps, but some
cannot”

Eberhardt Rechtin and Mark Maier

Tensions

 Demands on the system create a force field

“design is the [..]
structure or behavior of a
system whose presence
resolves or contributes to
the resolution of a force
or forces on that system.
A design thus represents
one point in a potential
decision space.”

— Grady Booch

“We're trying to find habitable zones in a large multidimensional space, in
which we're forced to make regrettable, but necessary, tradeoffs."

— Robert Smallshire

99

Sources of Forces
 “we build systems out of
pure thought, in order to
balance the static and
dynamic forces of cost,
schedule, functionality,
performance, reliability,
usability, and ethical
implications”

 – Grady Booch

Image source: Grady Booch
TECHNICAL
DECISIONS

Design Envelopes
In engineering, we contemplate,
weigh, and experiment to find the
boundaries of the design envelope.

“Hard" requirements tend to be
areas where our design envelope
has less "give", so other parts of the
requirements design have to flex.

“The better you understand the
problem, the closer you can design
to tolerances.” — Dana Bredemeyer

We innovate by pushing the design
envelope — extending the range of
possible, into the adjacent possible.

“the force field of a
software project starts
with Requirements.
Requirements are often
categorized in some
way, like "functional"
and "nonfunctional", or
"user requirements"
and "system
requirements.
However, requirements
of any kind [..]
contribute to shape the
overall field.”

— Carlo Pescio

Sources of Forces
 "We do not analyze requirements; we construct them from our own
perspective. This perspective is affected by our personal priorities and
values, by the methods we use as orientation aids, and by our
interaction with others” — Christiane Floyd

 ‘The word "requirements" represents a fundamental misunderstanding
of software. They're theories, at best.’ — Sarah Mei

 [with reference to the slide:] “Of
course they are categories: each
describing a class of forces. For
example, compatibility
encompasses pressures that arise
from legacy, frameworks, and
standards” — Grady Booch

 “Architecture is the set of design
decisions that provide a
reasonably satisfying resolution
to the static and dynamic forces
on the system.” — Grady Booch

 There is a multidimensional
decision space. We want to
surface not just options, but
assumptions about forces in play.

 Systems give rise to, and must respond to, forces

100

Forces in Dynamic Tension
 Rasmussen’s dynamic
safety model describes the
feasible operating space
for a sociotechnical
system.

 Adapted here to explore
interaction of code
habitability and software
habitability

Image: Adapted from the Dynamic Safety Model presented in Cook and Rasmussen, 2005

Economic failure

“habitable zone”

Code not habitable

Software* not
habitable

miss market or
market window,
impact on
revenue stream

“ball of mud” entanglement,
brittle and hard to change,
increasing pressure on the team

privacy or
security
breaches,
scalability
failures,
not accessible,
poor fit to user
purpose or
need

* in operation
and use

workload

 The dynamic safety model was developed by Jens Rasmussen;
adapted by Cook, Rasmussen, and others. It is described by Richard
Cook in his presentation titled “Resilience In Complex Adaptive
Systems” (Velocity 2013). This talk is available to watch on Youtube
(under 19 minutes), and highly recommended.

 We can combine the notion of habitable code and habitable
software, adapting Rasmussen’s dynamic safety model to design, to
illustrate Rob Smallshire’s point that “We're trying to find habitable
zones in a large multidimensional space, in which we're forced to
make regrettable, but necessary, tradeoffs.” I’m not sure of the origin
of the notion of code habitability, but it was Rebecca Wirfs-Brock
who drew my attention to it. And in his keynote at OOPSLA in 1995,
Christopher Alexander pleaded with our field to pay attention to the
habitability of the software we create.

 The idea that is being illustrated here is that if we push too hard to
get features to market to stay away from the economic failure
boundary, we may defer investments in code habitability and repair
and in so doing increase developer decision fatigue and stress
because of an overload of conceptual and decision burden with
entangled code and hard to predict consequences of changing the
code.

 But some of the things we do to keep the code habitable may also
keep us away from failures on the boundary of operation and use.

“Most software
architects do not think of
themselves accounting
for social issues, but that
is one of the
characteristics of good
architecture. Accounting
for social issues gives
designers an easier life,
which gives the software
a longer life.”

— Alistair Cockburn

Habitable Zone

 Exploring the habitable zone, where we try to keep
the system away from failure boundaries

101

Over Time
 ‘I've used 100% stacked area graphs
to visualize tradeoffs or strategic
allocation of "fixed" resources,
where the allocation changes over
time.’

 — Juno Suárez

 ‘I tend to use “graphic equalizer”
with scaler x-axis so that you can
overlay to compare and contrast
snapshot values for variables for
trade off.’

 — Dawn Ahukanna

Image source: Juno Suárez, https://hachyderm.io/@juno/110945173941162351

 I asked folk on mastodon what other visual forms they use to
bring tradeoffs into view.

Dawn Ahukanna pointed out that many of our representations
tend to be at a point in time. Dawn suggested: ““instance in
time” snapshot metric for contrast and comparison with other
snapshots. It’s like taking a time-lapsed set of photographs/
sampling of a specific spot and turning it into an motion
interaction where you can “pan through time.”’

 Peter Gassner pointed to a neat prototype they developed for
visualizing project constraints and dependencies:

 https://lab.interactivethings.com/confluence-diagram/#/

 And James Fairbairn: “I ask people more and more these days
about their theory of change — like, understanding the
complexity of this space, and how everything is a chain of
causes and conditions, let’s walk through how we think “X
leads to Y” *actually* works…”

“Eg: on a platform team
driving an enterprise
technology migration,
focusing time between
focus areas like
maintenance, new
development, and
support/training/customer
success. Conditions and
opportunities change over
the migration lifecycle
(adoption curve), and
capturing these requires
tradeoffs of team
attention.”

— Juno Suárez

Where the Forces Change over Time

 We also investigate the boundaries of the design decision
space looking for where these shift over time

102

 Decisions entail tradeoffs:
discerning tradeoffs takes judgment

Smart Decisions

 The Smart Decisions
Game highlights the
tradeoffs inherent in
each decision and
across decisions

 Images from: Smart Decisions Game site: https://smartdecisionsgame.com/

“Because the situation is
ill-structured, the goal
cannot be optimization.
The architect seeks
satisfactory and feasible
problem-solution pairs.”

— Mark Maier and
Eb Rechtin

The Smart Decisions Game
“Smart Decisions is a game that
simulates the design process of
software systems and promotes
learning about it in a fun way.” --
from the Smart Decisions Game
website; but having played the
game at SATURN, I agree. The
game can be downloaded, and
used in a team learning activity.

It’s a good way to highlight for the
team that each technology and
related decision has its strengths
and weaknesses, and architectures
are not just about individual
decisions, but weighing across the
decisions for a fit to the context
and purpose of the system. Further,
there will not always be agreement
on the approach to take, because
the nature of tradeoffs is that they
entail judgment about the
strengths/weakness as well as the
value of the outcomes, and the

degree to which the
consequences (in other areas of
the system, or its containing
systems) need to be taken into
account.

The SEI team has done important
work in the system qualities and
trade-offs space, including
developing the Architecture
Tradeoff Analysis Method:

“ATAM gets its name because it
not only reveals how well an
architecture satisfies particular
quality goals, but it also provides
insight into how those quality
goals interact—how they trade
off against each other”

We may notice where we’re being
constrained (that’s where we’ve
hit a point of tension in the
tradeoff space). But discerning
tradeoffs is very much a matter of
experience and judgment.

 Smart Decisions Game site: https://smartdecisionsgame.com/

Judgment Factors

103

Real Talk
What (really) shapes this decision space?

• What are we avoiding (talking
about)?

• What consequences are in “don’t go
there” zones?

• What forces feel too career-
dangerous to write down?

Besides, we’re addressing future impacts
that are uncertain … pawlitical forces…

 Significant decisions impact the paths or options we have, but
also change the possibility space of some areas of system
context or environment. They create paths, and close off paths,
for ourselves, for users, for others impacted. Decisions and
situations have reciprocal effects on one another; design acts
back as consequences, that we (may) take into account in
making the decision. When this has to do with action now, and
possible future consequences, it may cause indecision, or be
costly, in organizational terms, to probe and discuss openly.
There are no pat answers here. The culture of the organization
overall, and the part of the organization involved, plays a role.
We can point to the importance of psychological (or social)
safety in creating a learning environment where implications
can be probed, and responded to together. And we’re weighing
positive outcomes (intended direct effects, and as side effects
or positive externalities) along with negative. In the context of
uncertainty. Sometimes avoiding real talk may be about
uncertainty/ambiguity or conflict avoidance, but restricting the
consideration space may be due to decisions made elsewhere…
Similar to learning from incidents, we need to be able to seek
even conflicting perspectives, and explore options and impacts,
and feed that learning back into the decision. While being
pragmatic about uncertainty and the need to make decisions.

 Part of what makes leadership and experience important here,
is the willingness and ability to discern and take on these kinds
of organizational challenges, and navigating them. (Caveats
apply; alternately put: there is more to say, or nuance to add.)

When Consequences have Consequences
decision (n.) from decidere
"to decide, determine,"
literally "to cut off," from
de "off" (see de-) + caedere
"to cut" (from PIE root
*kae-id- "to strike")

https://www.linkedin.com/posts/christoph
erwilliams2018_complexsystems-journals-
systemsexploring-activity-
7159612234229301248-l4ip/

etymonline.com

 Acknowledging that it’s hard; there’s risk and
uncertainty, and uneven willingness to make hard calls

104

That’s … a Lot … so
 How do we clarify the situation and identify forces?

 — modeling, canvases and structured conversations

 How do we design and compare alternatives?

 — modeling, canvases and structured conversations

 How do we reach a decision?

 — modeling, canvases and structured conversations

 How do we build understanding and buy-in?

 — modeling, canvases and structured conversations

ust idding

(but also not)

 We’ve covered a fair bit of conceptual ground. The
“what” of the Architecture (or other strategically
significant) Decision Record indicates areas of work
that are separable but intertwined. There’s exploring
the context or situation (sometimes this goes by “the
problem”), with an emphasis on forces (or criteria) so
that when we evaluate alternative approaches
(“solutions”) we can identify tradeoffs (identifying
pains or costs we incur for what gains) and consider
approaches against the desiderata we’ve established.
But how?

 Ideally, we do this in a collaborative way, together
with those who have perspectives and experience that
inform our understanding of the situation, its
challenges, and options. An informal session at a
white board is generative, but canvases (such as the
Force Field canvas from Gamestorming on the next
page) and diagrams focus the discussion, while also
drawing attention to areas the discussion might
otherwise avoid or neglect. It’s good to have them in
the mix. It also builds a deeper understanding of the
decision than one made in a ”hub-and-spoke” way,
where one person is the main center of thinking
about the decision and puts ideas out for response.
How we work, can get a good part of the larger work
done, if we’re strengthening the decision and building
understanding and “buy-in” organically.

How We Work is Part of the Work
“You cannot coordinate purpose without
developing purpose, it is part of the same
process.” — Mary Parker Follett

“I get it. Meeting culture sucks. It’s too easy for
people to thoughtlessly take each others’ time,
occupy standing slots, show off with
performative teamwork, and generally suck
your energy. Meetings feel like dead time.
Meetings are time spent with people yet
strangely devoid of social gratification.
Meetings typically bore most participants —
the greatest sin in knowledge work — and
when they’re over, nothing has changed
except us all being that much closer to
retirement. [..]

But what if, hear me out, what if the *only*
work that matters in a knowledge economy
happens when we are together?.”

— Elizabeth Ayer, Meetings *are* the work

105

Force Field Analysis

decision or
solution

approach

forces for forces against

Adapted from: Gamestorming.com, by Dave Gray, et al

driving forces restraining forces
facilitating factors impeding factors

 Kurt Lewin did pioneering work in group dynamics, Action
Research, and organizational development.

 Of particular interest to us here, is Force Field Analysis, using
Force Field Diagrams, developed by Kurt Lewin. Lewin was
interested in group and organizational change or adaptation,
and forces holding the organization in quasi-equilibrium. Force
field analysis is useful in the context of organizational change,
but can also help visualize forces that any decision balances or
compromises across.

 ‘According to Kurt Lewin "An issue is held in balance by the
interaction of two opposing sets of forces - those seeking to
promote change (driving forces) and those attempting to
maintain the status quo (restraining forces)." Lewin viewed
organizations as systems in which the present situation was not a
static pattern, but a dynamic balance ("equilibrium") of forces
working in opposite directions. In order for any change to occur,
the driving forces must exceed the restraining forces, thus
shifting the equilibrium.

The Force Field Diagram is a model built on this idea that forces -
persons, habits, customs, attitudes - both drive and restrain
change.’
 http://www.valuebasedmanagement.net/methods_lewin_force_f
ield_analysis.html

Force Field Analysis

 Surfacing the forces that impinge on the decision

“If you want truly to
understand something, try
to change it.”

— Kurt Lewin*

 * this quote is attributed to Kurt
Lewin by Charles Tolman in
Problems of Theoretical Psychology,

“Any given change may be a
positive for some people and
a negative for others. Who
benefits from they way things
are now? Who will benefit
from a change? Who will
experience the negative
space, and what will that
negative be?

— Esther Derby

106

Decision Mind Map
 The decision template
is itself a great
structure for
conversation. Here, the
template is in “mind
map” like form

 Using the decision template in textual form, or mind map* form,
encourages attention to the different facets of the decision.
Starting with the context (or situation) and sought outcome, and
identifying forces, constraints, assumptions, before turning to
alternatives and describing options or design ideas. (We will
return to explore this more fully later in this module). The idea
with the mind map, is to tease out — adding tendrils and
following threads, exploring down a path. By having the
emerging picture on a whiteboard or (miro, etc.) frame, we’re
encouraged to add relevant detail to other areas of the map,
whenever such a detail emerges in the course of the
conversation. For example, if we notice we’re making some
assumptions while we explore forces or alternatives, we add
those in. It is just as well to notice that as we explore the
decision space, the outcome may come into clearer focus (and
even shift, as we understand the problem better). As we explore
consequences, we might find ourselves revisiting alternatives and
exploring trade-offs and consequences further. The “how” is non-
linear. We document the decision so that it reads in a way that
conveys clarity. But getting to clarity means some holding space
for ambiguity that uncertainty and complex interactions kicks up.

 * Mind Maps were popularized by Tony Buzan. Simon Wardley
protests such a use of the word “map.” Perhaps we can call it a
Decision Root Ball (haha).

Decision Template as Mind Map

 Exploring the decision together

“Our job [..] how to devise
methods by which we can
best discover the order
integral to a particular
situation."

— Mary Parker Follett

107

That’s… a Lot…Which Decisions?
“The value of every decision we
make depends on the context in
which we make it. In The Lord of
the Rings, Frodo’s journey to
destroy the ring is meaningful
inside the context of Middle Earth.
Otherwise, he’s a short, hairy guy
with apocalyptic hallucinations."

— Diana Montalion

 When I first read Martin Fowler’s “Who needs an Architect?”
column, I playfully summarized it as:

Which decisions does the architect make?

Architecturally significant decisions!

What is architecturally significant?

The architect decides!
Yes, it’s a tautology. Yes, I repeat myself. To playfully indicate that
architects discern what is architecturally significant, to determine
where to focus architectural (system design) attention.

As systems become more complex, we mean “the architects
[plural!] decide”, and note that decisions that prove to be
architecturally significant aren’t all known or knowable upfront.
The system evolves. Many people are involved, making decisions
that shape the system. Still, architects bring experience, context
awareness and system understanding — and a system design
purview — to judgments about what is architecturally significant.

Judgment. Can we say more?
‘wisdom is the ability to
know what “it depends”
on’ *

Which Decisions? Decisions are central,
and it is a great template,
but you can just hear the
captain in the cockpit
yelling "pull up, pull up"
— we'll run into a
veritable forest of
decision trees if we speed
too far too fast down
that runway just now.
Which decisions?

 Which decisions? The significant ones!

 * https://x.com/vladikk/status/1134124637925892096

108

Which Decisions?

SOFTWARE
ARCHITECTURE

“Software architecture is
the set of design decisions
which, if made incorrectly,
may cause your project to
be cancelled.”

— Eoin Woods

Further, architecture decisions are those that we need to make, to
ensure the integrity of the system being built. Where integrity includes:
• structural integrity: design to make the system hold up under

anticipated forces (staying within the operating safety boundary),
and limit, and limit the consequence of, failures (so matters like
security and discovering and limiting breaches; etc); matters of
robustness (detecting component failure and fast restart with
limited impact; etc) and resilience (supporting adaptive capacity),

• design integrity: conceptual integrity and requisite coherence (for
example, developing sufficient common ground and understanding
to work within more independent teams yet build a coherent
system), and

• organizational integrity: making decisions consonant with our
shared values even as we learn more what we value, and what
impact we have, and want to have.

Architecture interprets the identity of the system in technical terms,
and sets direction for and makes key system design decisions to
enable that identity. It informs and is informed by design for users
(determining capabilities the system offers users and other systems),
and fit to context and to purpose. And it sets context for further
(technical) design decisions. Since these decisions shape — shape
system identity, shape teams, shape context for further decisions —
they become harder to reverse. So it's important to notice which
decisions are of this nature (yes, judgment factors).

Which Decisions? Those that Contribute to Significant Outcomes

“Engineering is the
design and making of -
systems- with
integrity.”

— Alan Kay

109

Irreversible Decisions
 “Some decisions are
consequential and irreversible or
nearly irreversible [..] and these
decisions must be made
methodically, carefully, slowly,
with great deliberation and
consultation.”

 — Jeff Bezos
SOFTWARE
ARCHITECTURE

 No “One Time to Rule Them All” Decision Making

 So, strategy and architecture are about scope and impact, and not
something that is simply determined by being done upfront —
that is, by timing. Rather, the other way round. If it’s strategically
or structurally significant, we want timing to factor in decision
making. Is this something we need to pay attention to now? Why?

 We’re using judgment to decide on the timing of decisions. And
one way to inform this judgment, as pointed out by Sidharth
Masaldaan, is to consider risk. What is highest risk and needs our
(scarce!) expertise, perspective, attention and time now? And what
do we need to enable (by deciding and building)? Yes, in the
sense of enabling constraints.

 No “One-Size Fits All” Decision Making Either

 In his 2015 letter to Amazon shareholders, Jeff Bezos made this
important distinction between irreversible and reversible
decisions, emphasizing that consequential irreversible decisions
need to be made with great deliberation and consultation.

 Source: https://www.sec.gov/Archives

“One common pitfall
for large organizations
– one that hurts speed
and inventiveness – is
“one-size-fits-all”
decision making.”

–Jeff Bezos

 Not all decisions are equal.
What differences make a
difference?

 Some decisions are irreversible

110

Irreversible Decisions
 “If you walk through and don’t
like what you see on the other
side, you can’t get back to
where you were before.”

 — Jeff Bezos

SOFTWARE
ARCHITECTURE

 They change consequential things, we can’t undo

 10. The rule of 5. Think about
what the decision looks like 5
days, 5 weeks, 5 months, 5 years,
5 decades.

 11. Let other people’s hindsight
become your foresight. [Do the
research; draw on expertise.]

13. Ask what information would
cause you to change your mind.
If you don’t have that
information, find it. If you do,
track [it] religiously.

 Shane Parrish collected together
a useful series of decision
making heuristics in a twitter
thread. Here are several (the
numbers are Parrish's) that
we've selected for their bearing
in the case of more
consequential decisions [and
we’ve added a few notes]:

 17. Put things on a
reversibility/consequence grid
— irreversible and high
consequence decisions likely
require more time. The rest of
the time you can usually go fast.

 Source:
https://twitter.com/farnamstreet/status/1026
105498372845571

 We need to make those
decisions deliberately,
attentively

 22. Walk around the decision
from the perspective of everyone
implicated (shareholders,
employees, regulators,
customers, partners, etc.)

26. Ask yourself “and then
what?" [and "what if?" and "what
else?"]

Source: Shane Parrish
(@farnamstreet), on twitter, 5
Aug, 2018

Attending to Irreversible, Consequential Decisions

‘Legacy code is often defined as "code
that makes more design decisions than
the team working on it".’

— Ángel Siendones Sillero

111

Reversible Decisions
 “But most decisions aren’t like
that – they are changeable,
reversible – they’re two-way
doors.”

 — Jeff Bezos

SOFTWARE
ARCHITECTURE

• Development servers. Each
engineer has their own copy
of the entire site. Engineers
can make a change, see the
consequences, and reverse
the change in seconds
without affecting anyone else.

• Code review. Engineers can
propose a change, get
feedback, and improve or
abandon it in minutes or
hours, all before affecting any
people using Facebook.

 It’s worth highlighting two takeaways from Bezos's insights here:
• where we can, make decisions reversible — reduce the cost of

change.
• pay particular attention to consequential irreversible decisions —

attend to those that have high cost of change

"If you're good at
course correcting,
being wrong may be
less costly than you
think" —Jeff Bezos

 In Taming Complexity with
Reversibility, Kent Beck outlines
several approaches used at
Facebook for making changes
smaller, and getting feedback
more rapidly, so decisions can be
tried out and assessed, and
reversed if they don't pan out
well (enough), before they
become entangled in other
decisions, expectations and
habits. These include:

 But many decisions are reversible

Reversible Decisions

Reversibility Approaches

• Internal usage. Engineers can
make a change, get feedback
from thousands of employees
using the change, and roll it
back in an hour.

Source: Kent Beck, Taming
Complexity with Reversibility

In part, these satisfy the second
of Palchinsky's Principles:

"when trying something new, do
it on a scale where failure is
survivable" — Peter Palchinsky

112

SOFTWARE
ARCHITECTURE

(Ir)reversible Decisions
“Architecture represents the
significant design decisions that
shape a system, where significant is
measured by cost of change.”

— Grady Booch

(ir)reversibility of decisions

high cost of change

low(er(ed)) cost of change

“A good architecture reduces
disruptive change. For
example, if a on-the-wire
protocol has version support
you can do this. If it was
forgotten in the architecture
then the change is more
disruptive or very inefficient.”

— Martin Thompson

The Point?

"When reversibility is
important to you, that's part of
your context. The decision
section should state what
you're doing in light of that
context. (Pilot project,
wrapping interface,
abstraction layer, etc.)

— Michael Nygard

 When we talk about cost of change in the context of architecture,
we’re typically thinking about the cost to make changes to the
system. But cost of change plays in, in different ways. As the
system takes shape, other systems develop expectations of our
system – some implicit and some explicit, some critical and
constraining, others not so much. As our system becomes
embedded in expectations and commitments and reliance on its
role in the broader ecosystem, it becomes hard to “reverse” or
back out of shaping decisions. We might want to relate this to
“sheering layers,” but its at least good to recognize that we seek
stabilities, even as we seek to adapt and evolve.
 We have this interplay between decisions made early or next, to
bring the benefit of those decisions forward, and decisions
deferred to retain options. Even decisions about where we start,
have consequences. We canalize pretty quickly. That is, we reduce
the space of designs that are reachable. We gain an identity,
internally and in the market. That shapes in ways we notice and
don’t — we make assumptions about value to customers and
users, about system capabilities we’re creating and so need to
build in our teams, and so on. Sure, we (or the market) test(s) our
theory of value — in so doing, shoring up the assumptions we
proceed on. As users integrate our system into their workflows and
systems, they build up expectations or assumptions about how
things work, and ought to. As do we. There are a myriad ways our
systems become coupled and resist change. Pretty soon, we call
them “legacy systems” in that wry sense of a legacy we both value
(or at least depend on) and regret.

113

(Ir)reversible Decisions
“Realized that the word "context" is
shorthand for the cumulative effect of all
the past decisions that we cannot change
now. Decisions about what business we're
in, which clients we serve, what
compromises we made, where we've
invested time and effort, and where we
didn't. All of it adds up.
And here and now we are deciding things
that will become tomorrow's context.”

— Elisabeth Hendrickson

Adaptive Capacity … and Entanglements
 Software is highly mutable. Humans lend adaptive capacity to our
sociotechnical systems, allowing us to evolve them into astonishingly
complex, and useful systems. One characterization of legacy systems:

“Legacy systems are valuable because they continue to exist; they wouldn't
continue to exist if they weren't valuable.” — Kevlin Henney

 Nonetheless, our systems tend to canalize – internal structures are
adapted to fit shifts in context, but that fit comes at a cost, including
becoming embedded in other systems that rely on them, and resist
change. The 737 MAX story is illustrative of forces in tension…

“So when Boeing designed the 737 MAX, they were trying to balance two
conflicting requirements. [Accounts differ: bigger engines for fuel efficiency or
for range.] The other was to keep the design sufficiently similar to the existing
737 aircraft that pilots wouldn’t need a new type rating [which aircraft pilots
are allowed to fly]. But it turns out those new engines on the 737 MAX were
actually so big they wouldn’t quite fit under the wings. They couldn’t redesign
the airframe to make the wings higher, otherwise it wouldn’t have been a 737
any more, so instead they mounted those new engines a little further forward
and a little higher than the old ones. And this is where it gets complicated.
That new engine placement introduced handling problems – it meant that
when you open the throttle, the aircraft had a tendency to stick its nose up in
the air. And that’s bad, because if the nose goes up too high the plane is going
to stall. And so the solution to this was software. Specifically, a software
system called the MCAS – the Maneouvering Characteristics Augmentation
System.” — Dylan Beattie, The Cost of Code, 2019

Continually adapting, but the possibility envelope is shaped by prior
decisions.

“The law of stretched
systems:

every system is
stretched to operate at
its capacity; as soon as
there is some
improvement, for
example in the form of
new technology, it will
be exploited to achieve
a new intensity and
tempo of activity.

— David Woods

 David Woods, Laws that
Govern Cognitive Work, 2002

114

TECHNICAL
LEADERSHIP

When? Last Responsible Moment
 “the last responsible moment
[:] the moment at which failing
to make a decision eliminates
an important alternative.”

 — Mary and Tom Poppendieck

 Jeremy Miller on delaying decisions until the last
responsible moment:
“The key is to make decisions as late as you can
responsibly wait because that is the point at which
you have the most information on which to base
the decision.”

 And Jeff Atwood:
“Deciding too late is dangerous, but deciding too
early in the rapidly changing world of software
development is arguably even more dangerous. Let
the principle of Last Responsible Moment be your
guide.”

 Source: https://blog.codinghorror.com/the-last-
responsible-moment/

 Eb Rechtin and Mark Maier:
“Build in and maintain options as long as possible
in the design and implementation of complex
systems. You will need them.”

 Some wry? @nonspecialist@aus.social got you:

• “any decision you make now will be wrong
• you have to make a decision now, or things will be

worse
• if you don’t make a decision, it will be made for you

and you’ll have to live with the consequences”

“delay commitment until the last
responsible moment, that is, the
moment at which failing to make a
decision eliminates an important
alternative. If commitments are
delayed beyond the last responsible
moment, then decisions are made by
default, which is generally not a good
approach to making decisions.”

— Mary and Tom Poppendieck

 YouArentGonnaNeedIt (often abbreviated YAGNI,
or YagNi on this wiki) is an ExtremeProgramming
practice which states:

"Always implement things when you actually need
them, never when you just foresee that you need
them."

http://c2.com/xp/YouArentGonnaNeedIt.html

 Defer, until we know more?

Last Responsible Moment

115

TECHNICAL
LEADERSHIP

When? Earliest Responsible Moment
 “I prefer to make decisions when they
have positive impacts. Making
decisions early that are going to have
huge implications isn’t bad or always
wasteful. Just be sure they are vetted
and revisited if need be.”

 — Rebecca Wirfs-Brock

“I prefer calling that opportune moment of when it is
reasonable to decide, the Most Responsible moment
... as it is based on your judgment of the context, the
situation, the risks, and everyone impacted by that
decision.” — Rebecca Wirfs-Brock

 We may make ad hoc decisions
implicitly on the fly without
considered reflection, but some of
our decisions are going to cleave
the design space, ruling some
opportunities out. This will be true
whether they are implicit or
explicit, considered, reasoned and
probed, or made on the fly on
guesses or without even knowing
there were other choices we could
have made. Better, if we anticipate
they’ll be highly consequential, if
well considered.

 You know the adage: “What's the
best time to plant a tree? 20 years

 Some decisions, like strategy and
architecture decisions, create
context for further decisions,
establishing relationships, and
reducing the decision space. This is
good. It reduces the overload of
overwhelming ambiguity and
uncertainty, by narrowing the
space and putting stakes in the
ground. Now we can probe and
test, to see how we’re doing. We
make certain key decisions early, to
"put ground under our feet." Huh?
Ground? Metaphorically speaking,
but to be able to move forward, we
have to start to shape the space,
gain traction. More metaphors.

 We need to decide what we are
going to do (next, and at all, and if
we want to be proactive about
cohesive and concerted action,
where we are headed), and how.

“I believe that you can and should look ahead. And
that most developers, given half a chance, are
pretty good at incorporating past experiences and
making anticipatory design choices.”

— Rebecca Wirfs-Brock

 That defers benefits too

ago. What's the second best time?
Now.” Well, that’s true, unless we
don’t need a tree. And there isn’t
something more critical to do
now. But the point is important
too — trees can’t be moved so
they constrain and set context for
other landscaping decisions and
they take a long time to grow, so
to have the benefit of a bigger
tree, we need to start as soon as
we can.

As Mayoor Salva pointed out,
opportunity cost is a useful
concept to draw on here.

Creating Ground Under
the Feet

116

 The point isn’t that we know
what is earliest, last, and most

 It’s that we explore what we
gain and risk Simon’s scissors Image source: Jaeger et al

https://www.frontiersin.org/journals/psychology/
articles/10.3389/fpsyg.2024.1362658/full

earliest most? last

all responsible moments (some text blotted out)

Important options are
eliminated

Don’t have enough
information

When? Judgment, again huh

 If there is some time frame in which we can
“responsibly” make (significant) design decisions,
there is some “earliest” and some “last”
“responsible moment” — conceptually, anyway.
We don’t *know* where those points are, but the
point is more about (for significant decisions)
exploring (just enough) the tradeoffs… of earlier
benefit from the decision (being put into play)
versus knowing more later, and retaining degrees
of freedom longer. What depends on the decision,
and is held up? What is risky to defer, or to move
forward on without learning more?

 “What skills would we need in order to *not* have
to make this decision until later?” (Kent Beck)

 And! What should we bring forward, and for what
reason? And some of those reasons are
engineering reasons and some are market/user
facing reasons. So what skills do we need to
develop, to think strategically about the difference
that makes a difference here? (Where
“strategically” is relative to the scope at which we
are designing.)

 When to make significant decisions
is a significant decision?

When? Think About It

 “To make sense of such an ill-defined and open-
ended world — in order to survive, thrive, and
evolve — the organism must first realize what is
relevant in its environment. It needs to solve the
problem of relevance.” — Johannes Jaeger et al,
2024
(https://www.frontiersin.org/journals/psychology/a
rticles/10.3389/fpsyg.2024.1362658/full)

What do we pull forward because it
underpins, and what do we push out,
because we need to learn more, etc....

“Oh yeah, this is a golden year for
least responsible decisions.”

— Einar W. Høst

117

Significant

Architecture

Systems

Design

Decisions

Software Architecture: Decisions

118

Decisions Across Boundaries
 Software architecture is:

subsystems

system

components

service

Stream
aligned
team

Stream
aligned
team

 “significant design decisions
that shape a system”

 – Grady Booch

 “the decisions that need to
be made from the
perspective of the system, to
achieve sought system
outcomes”

 ~ Dana Bredemeyer
Enabling teamEnabling team

“across” in the
organizational sense
too

Recap: Our systems, and organizations, are
complex, or grow to be (Lehman’s Laws).
Organization design, like other system design,
entails a set of tradeoffs to weigh and balances to
strike. Organizations have sub-entities because we
organize to focus, to build and leverage
capabilities, to get work done.

Communication costs – in terms of time but also in
terms of focus of attention. Diverse perspectives
are important to innovation; too many perspectives
diffuses attention, increasing cognitive burden and
demands on relationship fostering.
Interdependencies cost in terms of potential for
delays as well as interactions and relationships
which need to be established and maintained.

So we seek to identify responsibility boundaries so
teams can be more independent. And yet we want
to create systems with structural and design
integrity – that is, conceptual integrity, as well as
robustness where it matters, and resilience or
adaptive capacity. And organizational integrity
(matters of ethics, and social and environmental
responsibility).

Systems: Cohesion, Integrity and Leadership
Decision making in strategy and architecture is
about setting direction and context, so that decision
making and work at more narrow scope, produces
something coherent at broader (system or system-
of-systems) scope. Without these decisions, we
have piecemeal contributions which fail to add up
to a system with integrity. These decisions have
impact across boundaries (and their associated
arenas of responsibility), and it takes organizational
will (determination, because they are hard and
other things compete for attention), and a
commitment to understanding the decision and its
ramifications, to follow through.

Participation in decision making helps build
understanding and a sense of priorities, but broad
participation in every decision doesn’t scale. So
“higher level” decisions (decisions that impact
across boundaries) need to be attended to and
made in a smaller decision setting (a few people),
but advocated for and shared in a way that brings
others along, so that impacted work is consonant
with these decisions. That is, decisions that impact
others’ work across boundaries, entail leadership
across boundaries.

119

Decisions Across Time
 “One (of many) ways to think
of product [and systems]
work is to imagine a series of
interlocking and related
sense and respond orbits....it
is all happening NOW, but
the orbits range in terms of
length...”

 — John Cutler

Sense

Respond

Image and quote source: https://twitter.com/johncutlefish/status/1571582435598675970

Anticipatory Response-ability

 One way to think about strategic significance, has
to do with what shapes the ecosystem and system
possibility space. What decisions lay down more or
less binding “tracks” – create constraints, and
relationships and value flows. What decisions are
long horizon “bets,” that set us up for years of value
creation and transformation, and enable viability
and establish identity, but also bind us into
expectations and ecosystem (legacy) relationships
that are harder to vacate without damaging market
relationships. And what are local decisions we can
adjust to and away from quite readily.

Implications for Horizons of Concern

 Image Source: Pavel A Samsonov,
https://twitter.com/PavelASamsonov/status/129681804
2928861184

“the cost of change from an
executive, is completely different
from the cost of change from a
development team”

—Jabe Bloom

 A decision with broad impact across the
organization, that underpins a myriad subsequent
decisions and hence shapes the outcome
possibility space over time, has many social and
technical implications.

 We introduce these concepts of scope and
timespan, to offer some language and distinctions
around scopes of influence and impact. A leader in
a small group setting is working with qualitatively
different challenges (in terms of complexity,
uncertainty, feedback loops) than a leader working
across groups within an organization, or across
organizations.

120

 Seniority generally comes with increasing scope of concern (across
systems, of systems, and, with more seniority, more impact on
ecosystems). Increases in scope mean we’re with dealing with greater
complexity, and need expertise and experience that is rooted in the
technical but is increasingly strategic and organizational. And we’re
dealing with longer time horizons, so more uncertainty.

 Elliott Jaques’ concept of time span of discretion/span of complexity
provides a way to talk about roles and decision span. Those with
shorter time span of discretion (and more narrowly scoped decision
frames) are making decisions with more immediate impact and
conscribed decision autonomy (e.g., the time horizon for completion of
work made visible to others on the team or management, may be days
or weeks). More senior roles are paying attention to longer term
outcomes, across more of the organization. More hinges on what
decisions are made, and not. All of these different scopes of concern
take attention and cognitive bandwidth, and demand experience and
expertise, but the focus shifts from more immediate observable effects,
to making judgment calls under greater uncertainty and complexity.
(That said, the essentialism aspect of Jaques work is… hard pass.)

While “time span of discretion” flavors the concept with what decisions
we have discretion over or power to effect, Yvonne Lam draws attention
to what timespan infuses our work and so draws/shapes our focus:
“different entities (orgs, roles, etc.) have a span of time in which they
can effect change, so that's the span of time to which they tend to pay
attention.” What I’m attending to, shapes what I perceive and attend to.

“thought about it as time travel: the higher up you go, the more you
live in the future. As a senior eng you live 1-2 sprints out. A manager, 1-
3 months. A director 3-9 months and so on. ” — Danielle Leong

 While, in general, we’re seeking to shorten feedback loops,
some roles are expected to make decisions with longer horizons

Leadership and Time/Scope

Time Span of Discretion
 A person’s time span of
discretion is about the (time
and complexity related) span of
the work they have discretion
(decision power) over.

feature goals on
2 week cycles

quarterly horizon

two year horizon

Dev team

Execs

Reference: Requisite Organization, by Elliot Jaques

 Source: Jabe Bloom, Whole Work:
Sociotechnicity & DevOps

“As a punk-ass programmer,
I’d grumble about
‘management.’ Well, they
have a job to do, and it’s a
really difficult job.”

— Kent Beck

121

Scope or Span of Complexity

system

enterprise

indiv. contributors

systems relationships
decisions across boundaries

teams

 scope of complexity 
 Scope of complexity is about
the span of responsibility
(taken on, or inherent to) and
focus of attention of a role

 Scope within a team evolving a
(part of a) system is less than
scope at the business unit level,
for example.

 Who is thinking about the system (across
internal and system boundaries)?

 Networks and leadership across (people,
teams, system/organizational boundaries,..).

 The management hierarchy is an accountability
hierarchy in the contractual, fiduciary and financial
sense. It manages people but also resources, like
getting funding early on, and allocating budgets
across priorities, including new business creation,
later on. Obvious, and yet we can overlook both
the importance, work and attention required, and
the stresses involved, in being responsible for
keeping salaries paid, investors and boards
satisfied, and making choices where outcomes may
only be fully visible years ahead.

 It is also a part of the (broader) communication
and co-ordination network. Influence networks, or
informal relationships, facilitate communication,
creating alternate pathways in the organization,
and can help to get cross-boundary things done
with less bureaucracy. They may be largely invisible
(the kind of thing where it would take many
interviews to map the influence network out, and
still miss much) until they kick into higher gear to
effect or impede change.

 There’s also the network of relationships in place to
get work done. We’re going to focus on complex
systems built, evolved and operated by several, or
even many, teams. Some of the system spanning
work is reflected in the management hierarchy;

Leadership Across (Scopes of Complexity)

 some in technical roles that span, like architect
roles; some is (ad hoc) “glue” work. As the span of
responsibility increases in scope, from responsibility
for some local part of a system, to responsibility
across subsystems and systems, the compass (span)
of complexity in technical and organizational terms
increases, and the demands on mastery shifts.

 Back to hierarchy for a moment, and a couple of
points from the Jo Freeman classic (“The Tyranny of
Structurelessness”): "Contrary to what we would like
to believe, there is no such thing as a
‘structureless’ group.” and “The structure may be
flexible, it may vary over time. It may evenly or
unevenly distribute tasks, power and resources over
the members of the group.“ An explicit hierarchy is
visible, and hence can be worked on, to make it
more inclusive and more about leadership (power-
with rather than dominance and power-over).

“the scales of information, people,
time horizons and information all
changes. As a result so does the
impact.” — Nivia Henry

122

Unique System Expertise
 Each system, and its
intertwingling in other
systems, is unique and
(co-)evolving.

 And we have a unique
responsibility and
opportunity to understand,
to recognize, to anticipate,
to draw out.

leading across boundaries
people

^

 Leading, whether informal/ad hoc or a demand of a role,
happens across – across responsibilities and organizational
space. And for whatever scope we’re leading across, we have
commitments that relate to the systems, subsystems, or
initiatives we’re responsible for and to, at the scope. This may
be formally associated with our role, or informal, if it’s an
initiative we see a need for, and have stepped up to lead on.
Those commitments are to outcomes, and to those we lead.

 To re-iterate for emphasis: we design, and we lead, to make
things more the way they ought to be. We lead, to make it
more a matter of we. And to discover, together, how things are,
and ought to be. Still, we have a unique vantage point. Unique
because of what we bring, but also because the organization
gives us, or we take on, a unique across perspective.

 This uniqueness of commitment and perspective means that
we have a unique opportunity, and need, to develop our
expertise in the very unique systems space we have taken on
leadership responsibility for. It’s not often that I write “unique”
three times in a sentence, but I want to explain why this
“observe” section is so important. We’re noticing, to respond
skillfully. And we’re perceiving and building a point of view and
expertise that no-one else is in a position to build.

Unique Perspective

“Reality is sedimented out of
the process of making the
world intelligible through
certain practices and not
others. Therefore, we are not
only responsible for the
knowledge that we seek but,
in part, for what exists.”

— Karen Barad

“Listen to the wisdom of the
system.”

— Donella Meadows

123

Decisions Across Boundaries
system System Design: Those decisions that

must be made:
• From the perspective of the

whole (eg impacts system
outcomes, capabilities and
properties)

• First/early/before/../if not last
year, then now! (considering
what decisions are highly
consequential to other
decisions, become irreversible,
etc.)

subsystems

components

service

Balance across different
demands and
perspectives and ideas
of what’s needed and
how to accomplish that

From a Moose cartoon:

“Thank you for introducing me to minimalism”

“It’s the least I could do”

The Minimalist Architecture Principle (Dana Bredemeyer): only
make a decision part of the architecture, if it is necessary to
achieving architecturally significant system outcomes. That is, if
it is necessary to make because it has impact across the system
and needs system perspective; it is make or break significant to
business and/or technical outcomes; etc.

Minimalist Architecture Principle

 Wait. Why are we talking about decisions?

Decisions made from a system perspective strive to be “and”
decisions that achieve better outcomes for all. But that may be
over a longer horizon than teams are being evaluated on. Or may
require taking a more broadly scoped view than the focus of a
single team, to see beyond any immediate negative impact (on
time or skills, etc.). Or may be about consequential second order
effects, that take courage and “social capital” to even lead
conversations about. This can put us in a place where navigating
the social and organizational implications is challenging (the soft
skills are the hard skills, kinds of things). In part, we navigate
these challenges with participative design (of various styles), so
various teams are represented in the sense-making and deciding.

SocioTechnical

“There are three main ways
of dealing with conflict:
domination, compromise and
integration."
[..]
"The first rule, then, for
obtaining integration is to put
your cards on the table, face
the real issue, uncover the
conflict, bring the whole
thing into the open.“

— Mary Parker Follett,
Constructive Conflict, Ch1 in

Dynamic Administration, first
presented in January, 1925

124

SOFTWARE
ARCHITECTURE

Software Architecture
Significance is indicated by
(aot):
• impact across system

boundaries
• implications for business

and engineering success
over short and long term

• Significant
decisions!

• Significant?

Pulling Ideas Together
 Architecture is system design, which means design
of the system in its various contexts (of use and
operation and development) as these contexts and
the system evolve and co-evolve, paying attention
to failure boundaries (economic, workload,
operational) and habitability (the software in use
and operation, the work with and around the code,
more) and to offering value that keeps the system
viable.

125

SOFTWARE
ARCHITECTURE

Software Architecture: recap
“Architecture represents
the significant design
decisions that shape a
system, where significant
is measured by cost of
change.”

— Grady Booch

where significant is
a matter of
judgment, but
includes system
integrity and
sustainability.

• Significant
decisions!

• Significant?

Where are we at with: What is Software Architecture?
 The focus on change as a driving force in
architecting, gets us a long way: some decisions are
significant for they are hard to reverse, and bear
high cost of change, so we need to pay close
attention to them and act while still reversible;
others are significant because, drawing on
experience, anticipatory judgment and technical
leadership, we reduce the cost and impact or
ramifications of changes that would otherwise
destabilize the system or slow its evolution. It's
important for systems that endure, to be evolvable,
as their contexts shift. And with agile and CI/CD, it's
all the more important to have the capacity to
extend the system and to respond to change (in
our understanding of what the system needs to be
and become, and in the context itself). Indeed, this
is a reason we put so much emphasis on
architecting for change resilience: change is a
future consequence and cost, and it takes
anticipatory awareness and organizational
leadership to invest attention, expertise and
wisdom in being proactive about change (early,
and as we evolve the system) in balance with
current pressures.

 But the most important thing, is that we are
designing a system — yes, we said that! Still, if,
given that architecture is design, but not all of

 We’ve explored the various aspects of Booch’s
characterization of architecture, to inform our work

 design, and we're teasing out which decisions are
architecturally significant, then our foremost
answer is: those that we need to make to ensure
desired system outcomes. That is, not only may
architectural significance be determined by cost of
change, but by strategic impact. What is make or
break? For developers? For operations? For users?
For the business team and other stakeholders? For
the broader social good? In order for the system to
be the kind of system it is, and uniquely so, what
capabilities and properties does it need to have?
What does this mean in terms of technical
priorities? And architectural mechanisms we need
to design and provision?

 What about architects? If we want systems that
hew toward integrity and sustainability and fit to
purpose and to context (balancing the various
tensions), we need designers who pay attention to
system design — the design of this system (in its
contexts of use, operation, development,
management, supply chains, and more) and of
systems. It’s a learning journey. And it’s a
significant set of responsibilities. These should be
shared, though it is useful to have a locus of
system design attention and responsibility. Hence
the role. It does not mean others don’t play a role
in architecture decisions! We partner with product
and across engineering teams.

126

SOFTWARE
ARCHITECTURE

Software Architecture
Significance is indicated
by, aot:
• cost of change
• impacts system

integrity
• competitive

impact/impacts
viability

Make or break
decisions with
structural, market, or
organizational impact.
High cost of being
wrong

• Significant
decisions!

• Significant?

What Does this Mean for Architecting?
 We design to get more the outcomes stakeholders
want (Herbert Simon). We undertake to apply
conscious purpose, or intentionality, along with
experience, knowledge and insight, and design
techniques that aid in surfacing and resolving
design demands and tensions. In competitive
situations that characterize business systems and
products or services, we're designing systems that
tend to be complex in that they forge new
frontiers, innovating to provide differentiating
value. That is, they are not only composed of non-
trivial components and interactions, but there is
considerable uncertainty as the design envelope is
explored and pushed, and contexts of operation
and use continually shift and evolve. Hence, we
want to architect to support agility, integrity and
sustainability.

 Agility has two essential components — sensing
and responding. Sensing opportunity to create and
define value. Sensing threat (uncertainty, change,
unmet needs, escalation or drift into failure, ...), and
sensing when and how to turn threat into
opportunity. And responding adaptively. Which
itself has various facets: what is done and how.
There's an element of how quickly (under threat or
to take advantage of windows of opportunity), but
also how we respond can severely undermine our
ability to respond adaptively in the future.

 What we mean by architecture has implications
for architecting

 We explored integrity earlier. By sustainability we
mean sustainability (not just in the short term, but
well into the future) in all its senses, including:
• economic: business sustainability through (net)

value creation and delivery
• technical: scalable, extensible, adaptable and

evolvable, resilience...
• social: organizationally viable, as the social

system(s) face challenges like scaling and
adapting as the ecosystem evolves; provides
social context for its people to thrive and find
joy in work

• environmental: putting more value into the
ecosystem than we take out, including taking
care to environmental

“Architecture is “the art of the
frame” [..] “the art of framing
possibilities for purpose”

— Ann Pendleton-Julian and
John Seely Brown

127

Strategic Challenges
 “Chicken-egg problems appear all the
time when building software or
launching products. Which came first,
HTML5 web browsers or HTML5 web
content? Neither, of course. They
evolved in loose synchronization,
tracing back to the first HTML
experiments and way before HTML
itself, growing slowly and then quickly
in popularity along the way."

 — Avery Pennarun

• Design!
• Evolving design
• Starting

problems

 In “Systems Design Explains the World,” Avery Pennarun
outlines some of the common problems system designers
address (https://apenwarr.ca/log/20201227). These include:

Chicken and Egg Problems: “The defining characteristic of a
chicken-egg technology or product is that it's not useful to
you unless other people use it. Since adopting new
technology isn't free (in dollars, or time, or both), people
aren't likely to adopt it unless they can see some value, but
until they do, the value isn't there, so they don't. A
conundrum.” (Avery Pennarun)

With respect to control structures, Pennarun observes:

“In systems design, there is rarely a single right answer that
applies everywhere. But with centralized vs distributed
systems, my rule of thumb is to do exactly what Jo Freeman
suggested: at least make sure the control structure is explicit.
When it's explicit, you can debug it.”

This reflects the underlying principle: formulate responses
given an understanding of how the system relates to its
environment (in use, and in operation and development), and
what this means for the viability and sustainability (economic,
technical, organizational, and environmental) of the system.
And understand how this is impacted by its current point of
evolution, and evolutionary trajectory.

Some Common System Design Problems ” 3. A statement of system
principle (mission or goals) is a
short-hand way of referring to
the special forms of
interdependence that exist
between the system and its
environment.
4. Thus, ‘a system can only be
properly characterized if we
also characterize its
environment’ and, conversely,
an environment can only be
characterizing the kinds of
systems it provides support
to.”

— Fred Emery, On Defining
Systems

128

Strategic Coherence
 Through system design
and architecture, we
bring strategic and
structural context to
subsequent decision
making

Image source: Jabe Bloom https://x.com/cyetain/status/1005115673973059584

“Some problems are so complex that
you have to be [..] well informed just
to be undecided about them.”
— Laurence J Peter (Peter’s Almanac,

entry for 24 September 1982)

What Does this Mean for Architecting?
 Across (boundaries) work* can fall through the cracks
when it has no “place” in the org. So part of our work is
convening those system level conversations and decisions.
And part of it is bringing strategic and context
understanding to more narrowly focused discussions and
decision making.

 Yes. I am once again suggesting that systems need
attention. Understanding that takes time and attention
and collaboration to build. Proactively as well as
responsively.

 Organizational relationship building. Fostering dialog and
investigative discovery. Emphasis on fostering, because
there is much that competes for organizational will
(willingness and determination).

129

System
Design

System Design:
Surfaces and Essences

Product Design
Overview and Concerns

Conceptual Architecture
Overview and Concerns

130

Design in Context

• Design!
• In next larger

context

 “Always design a thing
by considering it in its
next larger context.”

 — Eliel Saarinen

 “101 Things” is a book written for
building architects, but has
translatable lessons for software
architects. In it, Eliel Saarinen* is
quoted: "Always design a thing by
considering it in its next larger
context — a chair in a room, a
room in a house, a house in an
environment, environment in a city
plan." We could amend Saarinen’s
point to “always decide a thing by
considering its context.” Decisions,
any decisions, must take context
into account too. From desired
outcome(s) to forces that impinge,
to side-effects, interactions and
consequences, context factors. [*
Also, related by Eero Saarinen in
Time Magazine, "The Maturing
Modern," 7/2/56, pp-50-57]

 Christiane Floyd pointed out:
“Design consists of a web of design
decisions which, taken together,
make up a proposed solution.”

”The problem is
connected to a larger
system, and it’s not
solved by the quick
fix.”

— Mary Catherine
Bateson

Always Consider

 Design in context

 This is true of any design –
including organizational design, or
UI design, and system design. As
well as the design or formulation of
initiatives and strategies.

 Back to Christiane Floyd: ‘By design
I understand the creative process in
the course of which the problem as
a whole is grasped, and an
appropriate solution worked out
and fitted into human contexts of
meaning. In [Peter] Naur’s words:
"Software development is an
activity of overall design with an
experimental attitude“.’

 “Software Development as Reality
Construction” (by Christiane Floyd,
1992) is an exciting work, for it
articulates software development
as a co-evolving, dialogic process
where we are learning what the
design needs to be, even as we
adapt both the system and its

 context. That is, it exhibits what
Nora Bateson termed
“symmathesy” (learning
together).

131

Context Matters
 “Design quality is not a
property of the code. It's a
joint property of the code
and the context in which it
exists.”

 – Sarah Mei

Image source: @sarahmei

• Design!
• In next larger

context
• Context matters

 "[system design] strives for fit, balance and compromise among the
tensions of [stakeholder] needs and resources, technology, and multiple
stakeholder interests" (Rechtin and Maier) There is no perfect solution.
Eb Rechtin put it this way: “The essence of architecture is structuring,
simplification, compromise, and balance.”

 We joke about the two word answer to any question, that distinguishes
the architect: “It depends.” But a good architect tells you what it
depends on.

 At a recent conference, Diana Montalion shared her definition of
wisdom:

Wisdom = knowledge + experience + good judgment

 According to this definition, wisdom is the ability to know what “it
depends” on.

‘better expression
than “common
sense” is contextual
sense — a knowledge
of what is reasonable
within a context’

— Eb Rechtin

Context Factors

 Context determines fit

"The value of every decision we make depends on the context in which we
make it. In The Lord of the Rings, Frodo’s journey to destroy the ring is
meaningful inside the context of Middle Earth. Otherwise, he’s a short,
hairy guy with apocalyptic hallucinations." — Diana Montalion

132

C4: Context, Containers, Component

Image:
Simon Brown’s C4 Model https://c4model.com/

 From Simon Brown’s C4 Model overview:

 “A System Context diagram is a good starting
point for diagramming and documenting a
software system, allowing you to step back and
see the big picture. Draw a diagram showing your
system as a box in the centre, surrounded by its
users and the other systems that it interacts with.

 Detail isn't important here as this is your zoomed
out view showing a big picture of the system
landscape. The focus should be on people (actors,
roles, personas, etc) and software systems rather
than technologies, protocols and other low-level
details. It's the sort of diagram that you could
show to non-technical people.

 Container Diagram: Once you understand how
your system fits in to the overall IT environment, a
really useful next step is to zoom-in to the system
boundary with a Container diagram. A "container"
is something like a server-side web application,
single-page application, desktop application,
mobile app, database schema, file system, etc.
Essentially, a container is a separately
runnable/deployable unit (e.g. a separate process
space) that executes code or stores data.

 C4 system in context, components
in context

Design in next larger Context: Context, Containers, Component

 The Container diagram shows the high-level shape
of the software architecture and how
responsibilities are distributed across it. It also
shows the major technology choices and how the
containers communicate with one another. It's a
simple, high-level technology focused diagram
that is useful for software developers and
support/operations staff alike.

 Component diagram: Next you can zoom in and
decompose each container further to identify the
major structural building blocks and their
interactions.

 The Component diagram shows how a container is
made up of a number of "components", what each
of those components are, their responsibilities and
the technology/implementation details.”

 Source: Simon Brown, https://c4model.com/

133

Recall: Forces

Anatomy of a Decision

Context(s)

Systems of work;
social systems
Competitive
landscape

dev

ops

use

 Title: short noun phrase

 Context: desired outcomes and the forces at
play (probably in tension) +Assumptions
+Aternatives considered

 Decision: describes our response to these forces

 Status: proposed, accepted, deprecated or
superseded

 Consequences: describes the resulting context,
after applying the decision

Who gains? Who feels the pain? When (e.g.,
gain now versus pain in a year)?

 In the opening module, we considered architecture decisions,
and we return to that topic here, because it is so central.

Architecture Decisions

 Architecture decisions are made in a context

 One (set of) reason(s) to take context into account, is to
gain more understanding of what complexity we need
to take on because it is essential (to support users in
the domain, or our engineering teams, or our
strategy,..). Decisions we make accidentally in the
course of things, (tend to) create complexity: “Like
most tech debt, we didn’t make this decision, we just
did not not make this decision.” (Jack Lindamood*)

 A system that has ill fit to its context, will struggle to
survive and needs to adapt. And by fit, we don’t mean
over-fit. In dynamic, evolving, changing contexts, a
system needs adaptive capacity to evolve to fit shifting
contexts.

Context: Why Though?

Quote source: Jack Lindamood, 2024
https://cep.dev/posts/every-infrastructure-decision-i-
endorse-or-regret-after-4-years-running-
infrastructure-at-a-startup/
Donald Schon, Design lecture, 1989
https://hiredthought.com/2021/02/24/donald-a-schon-
at-iowa-state-university-talk-transcript/

"In a situation of uncertainty, the
problem that you face is the problem of
constructing a problem because you
don’t know what the problem is. And the
problem of constructing a problem is not
a technical problem. In fact, the opposite
is true, you have to construct the
problem before you can carry out any
technical activity.” — Donald Schön

134

Design in Context

development context

operations context

use context

business context

Context:
Needs
Threats
Opportunities
Value flows
Constraints
Interactions
…• Design!

• In next larger
context

• Context matters
• C4
• Forces

 The forces on the system arise from various contexts,
and interact. We’re designing a system that meets user
needs (has customers and users who integrate it into
other systems, including systems of work and other
facets of individual and social life; it is sustainable in
the ecosystems that it delivers value to), and is
internally viable and sustainable (it addresses the
challenges of delivering the capabilities users need,
across users, and as use scales across more users in
different contexts, etc.).

 And this “fit” is not over-fit, or too closely fit. We
evolve the system for various reasons: we can’t do
everything at once, so there is an aspect of sequencing
and incremental development; we don’t know
everything at once, so there is an aspect of learning
what is valued and learning how users adapt the
system capabilities into their larger contexts and
systems of work and play and life; and things are
changing including as a result of what we are adding
to the ecosystems (of use, of engineering, of
production and supply chain relationships, etc.). So we
adapt the system to more closely fit the challenges
and needs it faces, while retaining (attempting to
retain) adaptive capacity.

Design is Making Trade-offs

 We tend to focus on user context in product and
engineering context in dev and devOps, but…

"Design is rooted in concerns"

"Design is, then, always
multiperspective, even where
pursued by individuals.“

“Perspectivity necessarily entails
blindness. I cannot see what I
cannot see from my perspective.”

— Christiane Floyd

"Conflict situations are situations
where you face conflicting values
and where you don’t [yet] have a
technical problem to solve,
because you must make the values
consistent before you can solve
such a problem.” — Donald Schön

135

System Design: in Context
 Design in context(s)

• Contexts of use, of design and
development, of manufacturing and
operation, of management

• Social, political, economic, technical
contexts

→ move inwards (zoom in), move outwards
(zoom out); pan around and scan; surface forces
and constraints and consequences

management

use design
and
dev

operation/
manufacturing

I switched from rectangles to circles for this slide
to draw on the notion that we might think the
“target” of our (system/engineering) design is
internal to the system, and we’re “given”
requirements to work to. That is more or less true,
and more true in some organizations and system
contexts than others.

As system designers, however, it is important to
identify and understand the forces that impinge
on and shape our design (option) space. Some of
those forces are from within the system – systems
place constraints their inner environments (some
are intentional design choices; some emerge from
interactions among parts, etc.). There are matters
of fit among parts. But also, of parts and contexts,
and system and context, …. A technology choice
for a part, that acts back and constrains other
choices beyond the part. (For example, a licensing
agreement, that then shapes the cost profile and
ties our product pricing increases to those of the
vendor. Whoops.)

System in Context and System Design
If we’re designing a part, because it needs our
specialist knowledge, we might notice that we
have an arena of knowledge that no-one else has.
Knowledge about our design but also about what
is happening in the technologies associated with
that space. We bring that knowledge to the
system design table.

Knowledge of complex systems is distributed, and
knowledge of the contexts of the parts and the
system is distributed. Systems design is about
fostering knowledge not just of the design, but
the spaces that produce forces on the design, and
exploration and understanding of the
consequences of design choices (and feeding that
back into our design responses).

But this is a lot, and we need to navigate the
space of concerns, building, evolving and
repairing our understanding, but also making
design commitments and designs and moving the
design (and implementation) forward.

136

Form and Context
 “Every design problem begins
with an effort to achieve fitness
between two entities: the form
and its context. The form is the
solution to the problem; the
context defines the problem.”

 — Christopher Alexander, Notes
on the Synthesis of Form, 1964.

“The form is a part of the world
over which we have control, and
which we decide to shape while
leaving the rest of the world as it
is. The context is that part of the
world which puts demands on this
form; anything in the world that
makes demands of the form is
context. Fitness is a relation of
mutual acceptability between
these two. In a problem of design
we want to satisfy the mutual
demands which the two make on
one another.”

— Christopher Alexander, Notes
on the Synthesis of Form, 1964

Building our Understanding of the Context
Christopher Alexander and other building
architects, emphasize the fit of architecture to
context.

DeWeck et al (image below), in their classification
of sources of uncertainty, delineate various
contexts of (potential) relevance to us. Our
contexts are sources of change, uncertainty and
ambiguity, forces (gradients, pushes and pulls,..).

 source: DeWeck et al, A Classification of Uncertainty

137

TECHNICAL
LEADERSHIP

Theory Building

“what has to be built
by the programmer is
a theory of how
certain affairs of the
world will be handled
by, or supported by, a
computer program.”

— Peter Naur

Building our Theory of the Problem

 But more than that . We’re building a theory (of what
the system is and ought to be, and how it works)

Our field contends with complex
software-intensive systems and
their evolution, and one of the
classics (1980) is "Programs, Life
Cycles, and Laws of Software
Evolution.“ In it, Meir Lehman
observed:

"The installation of the program
together with its associated
system [..] change the very
nature of the problem to be
solved. The program has
become a part of the world it
models, it is embedded in it.
Analysis of the application to
determine requirements,
specification, design,
implementation now all involve
extrapolation and prediction of
the consequences of system
introduction and the resultant
potential for application and
system evolution. This prediction
must inevitably involve opinion
and judgment.“

Peter Naur, in “Programming As
Theory Building” (1985), argues

“programming properly should
be regarded as an activity by
which the programmers form
or achieve a certain kind of
insight, a theory, of the matters
at hand.”

A theory, that is, of the problem*
being solved, and how the code
relates to and addresses this
problem.

Returning to Lehman:
“any program is a model of a
model within a theory of a
model of an abstraction of
some portion of the world or
of some universe of discourse”

Between Lehman, Floyd, and
Naur, we have an important set of
ideas for software, or any
systems, really. We’re building a
theory, that informs our (design)
decisions. We need to anticipate
the impact of our decisions, in
making them. And probe, to
assess/amend our theory.

 These classics advanced ideas about design that are important today

* Where the “problem” is the
opportunity we’re creating, the
need we’re addressing, etc, with
the capability we’re building.

138

TECHNICAL
LEADERSHIP

Programming as Theory Building

 We’re building a theory of “the matters at hand”

“people got their opinions
where do they come from?
each day seems like a natural fact
and what we think changes how we
act.”

—Why Theory? Gang of Four lyrics

Peter Naur draws on Ryle’s notion of theory and its
role in intellectual (we might, today, rather
emphasize cognitive) activity:

“where theory is understood as the knowledge a
person must have in order not only to do certain
things intelligently but also to explain them, to
answer queries about them, to argue about them,
and so forth. A person who has a theory is prepared
to enter into such activities; while building the
theory the person is trying to get it.”

Peter Naur is articulating a theory of the difficulty of
developing shared theories, and the importance of
direct conversations in conjunction with the code to
communicate our webs of understandings (or
theories, or interrelated, interwoven mental models).

I would add that our theory (or system of theories)
supports coherence and design integrity, and we’re
ever working towards requisite coherence among
our (various folk design-build-evolving the system)
individual mental models and perspectives. Seeking
to understand the system, and its context(s) (or
situation), and each other more, and evolve our
theories in that direction, anyway.

Theory Building

“[A social] system always contains at
least three elements or dimensions which
are locked into one another: a social
structure—which is a set of related roles
and authority relationships—a
technology and a theory. And by a theory
I don’t mean an academic or sociological
theory about the system: I mean what it
is that’s believed that causes people in
the system to do what they do.”

— Donald Schon, Reith Lecture 2

139

TECHNICAL
LEADERSHIP

Programming as Theory Building

 We’re building a theory (of what is, how it works)

“It’s developer’s
(mis)understanding, not
expert knowledge that gets
released in production”

— Alberto Brandolini

Our systems change the world, based on our understandings
and assumptions, so these are, well, important.

Alberto Brandolini (@ziobrando on twitter): “It is not the
domain experts knowledge that goes into production, it is
the assumption of the developers that goes to production”
(via Krisztina Hirth)

Theory is a way to talk about not just our mental models,
and our reasoning-explaining and coherence making
(attempts), but also a discipline of probing and testing our
theories. Theories! Because we’re not only developing
theories of how our system works, or how it is structured to
meet needs like adaptability and understandability, but
theories of why the system matters and what matters (to
users) and how.

And to the extent that we can build up shared, or at least
sufficiently overlapping, theories, we’re working on common
ground (Klein et al) and requisite cohesion (Jabe Bloom). And
we can probe and test elements of our theories, with
thought experiments and walking through our reasoning
“out loud” and “where we can see it,” or user studies, or
prototypes, as well as experiments in the A/B testing and
market “bets” sense).

Building our Theories of the Problem and Solution

Brandolini’s Law: “The
amount of energy needed to
refute bullshit is an order of
magnitude bigger than that
needed to produce it”

140

Design as Theory Building
System-in-Context

(use, dev, ops)

Product Design
Design of system

capabilities/properties

Architecture
Structure and
mechanisms

System

Developing
our theory of
the problem

Developing
our theory of
the solution

“It’s developer’s
(mis)understanding, not [domain]
expert knowledge that gets
released in production”

— Alberto Brandolini

Design of What the System Is and Is Becoming
.

“In analytical thinking the thing to
be explained is treated as a whole to
be taken apart. In synthetic thinking
the thing to be explained is treated
as part of a containing whole. The
former reduces the focus of the
investigator; the latter expands it.”

— Russell Ackoff

“When you analyse a problem you
see what kind of problem it is, and
identify the concerns and difficulties
you have to deal with to solve it.”

— Michael Jackson

We use design in two senses: the system (as
currently built) has a design (noun; what the system
is), and we design (verb) to make the system more
the way we want it to be (we design to shape, or
bring intent to what the system is becoming). We,
there, is a complex! We, users. We, designers. We,
business leaders. And more. And “we” all have
different ideas and experiences of what the system
is, and ought to become.

In the STELLA report, David Woods draws on
Richard Cooks’ diagram (figure 4) of the various
people (roles) interacting with a system (developers,
architects, operations, users), where below the line
there are the artefacts (code that may be internally
and externally sourced, tools like monitoring, deploy
and testing tools, etc.) and above the green line “of
representation” people are interacting with the
system to do things they need to do, via their
(unique to each) mental models.
(https://snafucatchers.github.io/)

Design works to create a theory of not just what the
system is and is becoming, but how that matters.
And to build sufficient shared understanding.

141

Design: System in Context
System-in-Context

(use, dev, ops)

Product Design
Design of system

capabilities/properties

Architecture
Structure and
mechanisms

• What is the system used for (purpose
and identity)?

• Which capabilities are we going to
move across the system boundary?

• What new capabilities are we going to
bring into existence?

• How is the system being adapted (and
exapted) to new uses?

System behaviors and properties
• impact (users, partners, operations)

experience

System

Design of What the System Is and Is Becoming
Some design tools we use:

• Event storming

• Domain story telling

• Rich pictures

• Use cases

• User story maps (and user stories)

• User journey maps

• Impact maps

ex·ap·ta·tion (ĕg′zăp-tā′shən)

n. Biology

The utilization of a structure or feature for a function
other than that for which it was developed through
natural selection.

142

Design Across Boundaries
Context System-in-Context

(use, dev, ops)
System

(Ecosystem)

Strategy
Ecosystem

interventions

“Requirements"
Design of system

capabilities

Architecture
Structure and
mechanisms

 System design is
contextual design — it
is inherently about
boundaries (what’s in,
what’s out, what
spans, what moves
between), and about
tradeoffs. It reshapes
what is outside, just
as it shapes what is
inside.

internal design: parts
and interactions;

theory of operation;
theory of “the

solution”

product design technical design

capabilities and
properties; theory of

value (or “the
problem”

Identity and direction;
theory of

differentiation and
role in ecosystem

System Design is Contextual Design

 Decisions that impact across boundaries,
need perspective across boundaries

We architect across — across boundaries: across not
just the code and the teams involved, but across the
internal system design (architecture and code/tests)
and design of the system-in-use or system-of-
systems design (what our industry has tended to call
“requirements”); across the different languages and
concerns of these different spaces, the technical
language of code and test and integration,
deployment and operation, and the languages of
the domains where the system is used; across the
turfs and sense of ownership and decision
responsibility; across views and perspectives; etc.

But of course, we can't attend to everything, at least
not all at the same time, in detail. We "zoom out," as
it were, to scan the ecosystem or value landscape, to
identify opportunities and challenges that do
warrant closer attention. To set framing for the
problem, to understand the trends and forces that
shape and constrain it. To get a bearing on the
ecosystems that are or will be impacted.

Recognizing that a system changes its contexts,
means recognizing we're designing the system-in-
context — not just the system, but the socio-
technical system or system-in-context (of use)
too. While we have limited degrees of design
freedom with respect to the context, everything
the system takes on, impacts its (various)
context(s), so we are redesigning at least some
aspects of the containing socio-technical systems
and broader context.

Alternately put, to develop our "theory of the
problem," or to "load" the context into our mental
models, so that we can uncover this
multidimensional decision options and tradeoff
space, we need to ask (not just) "what do users
need?" but also "what do developers and testing
need?" and "what do our operations and security
teams need?" and "what do others in the value
network need?"

“We need to ask: what does the
code need?” — Michael Feathers

“The greatest complexities arise
exactly at boundaries”

— Donella Meadows

143

Design: Nonlinear
 System design is
contextual design — it
is inherently about
boundaries (what’s in,
what’s out, what
spans, what moves
between), and about
tradeoffs. It reshapes
what is outside, just
as it shapes what is
inside.

 Image source: virpi/businessillustrator.com

“all models are wrong, but some are useful”
– George Box

 Decisions that impact across boundaries,
need perspective across boundaries

 In system design and architecture we are moving
fluidly between wholes in contexts, parts and
relationships, insides and outsides, forces
impinging from the context and forces emerging
from the system, etc. We’re thinking holistically
sometimes, but drilling into, to further understand,
zooming back out, and backtracking if we need to.

 “This instinct to subdivide complex systems
dominated scientific inquiry, and it advanced a
framework that attempted to reorganize nature
into deceptively simple components. This was the
logic of reductionism, a way of thinking that can
be traced at least as far back as Aristotle.
Reductionism analyzed complicated things
(bicycles, cities, humans) by breaking them down
into distinct parts (wheels and gears, streets and
people, organs and cells). In theory, everything is
the sum of its parts. So if you understand those
parts, you understand the whole.” — Mark
Bittman

 We need to think in terms of parts and
relationships (to cope, as our systems become
more complex) and in terms of what emerges
from the dynamic interactions not just among
parts, but systems in (broader) contexts.

Nonlinear Exploration
 One point that I hope emerges in the workshop
experience, not just the "theory": system design
and architecture is where we pay attention to the
system — parts and interactions that give rise to
wholes with more the capabilities and properties
we want , which means understanding the
whole(s) in its environments (technology,
social/organizational, use, economic/business
viability, ..).

 This means partnering and collaborating across
boundaries, and... that can be tricky to navigate
and make real, and more so in some orgs and
parts of orgs... "Understanding of complex systems
is distributed" and we need conversations that
scaffold bringing some of that understanding
together. All of our design arenas are intense —
demand expertise and attention/focus and work,
and have their practices and communities. And yet
influence needs to flow across the boundaries and
not just one way.

144

“The menu is not the meal”
— Alan Watts

Frames and Practices

Business
Strategy
Business
Strategy

Product
Design
Product
Design

Fitness
Properties

Fitness
Properties

Platform
Design

Platform
Design

Engineering
Strategy

Engineering
Strategy

Conceptual
Architecture
Conceptual
Architecture

Physical
Architecture

Physical
Architecture

Logical
Architecture

Logical
Architecture

Engineering Strategy

Conceptual Architecture

Physical Architecture

Logical Architecture

Business Strategy

Product Design

System Properties

Platform Design

Theory of the Problem
(theory that shapes the
value we offer)

Theory of the Solution
(theory that shapes how we
structure the system, its
mechanisms and tradeoffs)

Theory of Differentiation
(theory that shapes the role
we play in the ecosystem)

System-in-context System (internal)

context

“A map is not the territory it
represents, but, if correct, it
has a similar structure to the
territory, which accounts for its
usefulness.”

— Alfred Korzybski

 The framework on the slide outlines the organizing structure for
this workshop, and also serves as a conceptual model for system
design.

Organizing Structure

145

 We recommend the Duarte material on slidedocs® in addition to the
template; much that is valuable there.

“Act always so as to
increase the number
of choices.’
— Heinz von Foerster

Duarte Slidedocs®

 Shoulders we stand on

 We have consciously brought various pioneers and contemporaries
visibly into our materials for two reasons:

 i. to acknowledge and celebrate the extent to which we are because of
others (Abeba Birhane). It is a small way to bring into the room, so to
speak, with us people whose insights and work has influenced us, and
integrated with our experiences, other reading and conversations, and
more, to build what we understand and can share.

 ii. to recommend to you wonderful work you may want follow up on,
and also to draw in our contemporaries who are sharing insights that
you too may find useful, and want to follow them on twitter, etc.

Quotes and Photos

TECHNICAL
LEADERSHIP

Attribution
 The format for these notes is adapted from
a template from Nancy Duarte and team.

 For more:

 https://www.duarte.com/slidedocs/

146

Stay in Touch
 Ruth Malan:
 Bluesky: @ruthmalan.bsky.social
 LinkedIn: Ruth Malan
 Web: ruthmalan.com

 Masterclasses and
Workshops
• System Design and

Architecture, Feb 24-26
and Mar 3-5, 2025

• Technical Leadership,
Dec 4 and 11, 2024

“What we care about is the productive
life, and the first test of the productive

power of the collective life is its
nourishment of the individual. The

second test is whether the contributions
of individuals can be fruitfully united”

— Mary Parker Follett

Attribution — Please give appropriate credit if you quote from this book. You may do so in any
reasonable manner, to a reasonable extent, respecting the work it takes to create something like this.

